MorphOS: An Extensible Networked Operating System

PETER OKELMANN, Technical University of Munich (TUM), Germany

ILYA MEIGNAN-MASSON, Technical University of Munich (TUM), Germany
MASANORI MISONO, Technical University of Munich (TUM), Germany
PRAMOD BHATOTIA, Technical University of Munich (TUM), Germany

This paper introduces MorphOS, an extensible networked operating system that addresses the runtime inflexi-
bility of unikernels for dynamic, stateful network-intensive applications like Virtual Network Functions (VNFs).
While unikernels offer superior performance and minimal resource overheads, their traditional update mech-
anisms require costly rebuilds and restarts, leading to service disruption and state loss. MorphOS addresses this
by integrating eBPF to enable dynamic, verified code execution for seamless updates to packet processing logic.
It employs an out-of-band verification service to offload computationally intensive verification tasks and utilizes
hardware-assisted memory isolation (Memory Protection Keys) for enhanced execution hardening. Our evalua-
tion of MorphOS with four VNF implementations demonstrates significant benefits: MorphOS drastically reduces
reconfiguration time, effectively amortizes verification costs, and achieves up to 3 better performance compared
to Linux-based VNF deployments, all while preserving the inherent lightweightness of unikernels. MorphOS
thus paves the way for adaptable, efficient, and state-preserving networked applications in cloud environments.

CCS Concepts: « Networks — Programming interfaces; Middle boxes / network appliances; In-network
processing; » Computer systems organization — Maintainability and maintenance; - Software and its
engineering — Input / output; Automated static analysis; Just-in-time compilers; Software safety.

Additional Key Words and Phrases: Unikernels, Reconfigurability, Virtual Network Functions, eBPF

ACM Reference Format:

Peter Okelmann, Ilya Meignan-Masson, Masanori Misono, and Pramod Bhatotia. 2025. MorphOS: An Ex-
tensible Networked Operating System. Proc. ACM Netw. 3, CONEXT4, Article 30 (December 2025), 25 pages.
https://doi.org/10.1145/3768977

1 Introduction

Operating Systems (OSes) are the cornerstone that provides a performant and reliable platform to fast
networked applications [22, 47, 63, 64, 67, 83, 116]. Several studies optimize OSes and network stacks
to improve performance for serverless [64, 109, 113], Virtual Network Functions (VNFs) [12, 45, 89],
and instance chaining [85, 93, 114]. Recently, unikernels [64] have gained attention as a promising
approach among them [57, 67]. Unikernels are specialized operating systems designed to run in cloud
environments and target a single application. Unikernels expose more low-level OS primitives to appli-
cations than general-purpose OSes, enabling applications to assemble, e.g., network stacks that are op-
timal for their specific workload. By optimizing its components at compile time, unikernels enable high
performance, reduce image size, and offer rapid boot-up times, making them a compelling option for
cloud deployments. This holds particularly true for performance-critical VNFs [9, 15,42, 60, 88, 98,101]

Authors’ Contact Information: Peter Okelmann, okelmann@in.tum.de, Technical University of Munich (TUM), Germany;
Ilya Meignan—-Masson, ilya.meignan-masson@tum.de, Technical University of Munich (TUM), Germany; Masanori Misono,
masanori.misono@in.tum.de, Technical University of Munich (TUM), Germany; Pramod Bhatotia, pramod.bhatotia@tum.de,
Technical University of Munich (TUM), Germany.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2834-5509/2025/12-ART30

https://doi.org/10.1145/3768977

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 30. Publication date: December 2025.

https://orcid.org/0000-0001-6728-1335
https://orcid.org/0009-0000-1432-1575
https://orcid.org/0000-0002-9654-9983
https://orcid.org/0000-0002-3220-5735
https://doi.org/10.1145/3768977
https://orcid.org/0000-0001-6728-1335
https://orcid.org/0009-0000-1432-1575
https://orcid.org/0000-0002-9654-9983
https://orcid.org/0000-0002-3220-5735
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3768977

30:2 Peter Okelmann, llya Meignan—Masson, Masanori Misono, and Pramod Bhatotia

that offer a paradigm shift from traditional, hardware-centric network infrastructure to agile, scalable,
and software-defined network functions running on OSes, e.g., in cloud virtual machines (VMs).

However, unikernel-based applications inherently face significant limitations in terms of recon-
figuration and extensibility [71]. Changing processing logic requires rebuilding and redeploying
not only the application but the entire unikernel. Although unikernels realize faster boot times than
traditional VMs, rebooting results in losing all state, which may lead to interruption of connections
or introduce a non-negligible performance overhead in the case of VNFs [67, 71]. Applications such
as state-of-the-art VNFs attempt to mitigate the lack of OS-level reconfigurability with runtime
parameters and configuration. However, such approaches pay for the gained flexibility with increased
runtime-complexity and hence performance [33, 43].

To that end, we ask the following question: Can unikernels provide a generic mechanism for net-
worked applications to enable flexible live-reconfiguration while maintaining performance and safety
properties?

To address this question, we propose MorphOS, a novel extensible networked operating system de-
signed to overcome the runtime inflexibility of unikernels. Our key insight is that a satisfactory recon-
figuration mechanism must expose control flow and state management capabilities. MorphOS is first
to introduce verified and JIT compiled eBPF programs to the world of unikernels (MorphOS eBPF run-
time), realizes OS abstractions for applications to leverage eBPF for flexible live-reconfiguration (Mor-
phOS hookpoints), and offers a modular high-performance network stack that integrates with hook-
points (NetStack). We build upon eBPF programs [68] as a suitable foundation for MorphOS because
it has a well-established ecosystem of fast execution environments and safety mechanisms [19, 39].

To provide safe reconfigurability to applications, MorphOS overcomes three key challenges im-
posed by unikernels. First, existing application-level reconfiguration mechanisms are often limited in
scope and lack sufficient programmability. The traditional approach of recompiling and redeploying
unikernel applications not only disrupts service but also results in the loss of critical runtime state.
With MorphOS, applications leverage eBPF hookpoints (§ 5.1) to make algorithms and decisions fully
programmable and live-reconfigurable while retaining runtime state (§ 5.3). Second, the single-address-
space nature of unikernel-based applications risks a surge in outages triggered by the insertion of
faulty eBPF programs. Unfortunately, verifiers are not suitable for integration into lightweight uniker-
nels. MorphOS proposes an out-of-band verification service (§ 5.4) to enforce the correctness of the
eBPF programs while maintaining fast reconfiguration times and the lightweightness of the uniker-
nel. Third, unikernels reduce the amount of safety isolation compared to traditional multi-tenant
OSes. However, such isolation is necessary because the complexity of automated verification makes
eBPF verifiers error-prone and unfit to enforce safety guarantees. MorphOS, therefore, introduces
alightweight hardening technique for unikernels based on Memory Protection Keys (MPK) available
with all x86 CPU vendors (§ 5.5) that is optimized for data-intensive eBPF environments such as VNFs.

We implement MorphOS on top of Unikraft [55] and adapt the Prevail [39] verifier to offer an
out-of-band verification service. We integrate the Click [67] modular router with MorphOS APIs
to build a set of reconfigurable and eBPF-driven VNF prototypes called MorphClick: a forwarder,
a firewall, Deep Packet Inspection (DPI), and Network Address Translation (NAT). In our evaluation,
we compare these eBPF implementations with native implementations on Unikraft and Linux. We
evaluate MorphOS across three dimensions: lightweight reconfigurability (§ 8.1), correctness and
safety (§ 8.2), and performance (§ 8.3). The results show that MorphOS reduces reconfiguration times
while maintaining the lightweightness of unikernels. The MorphOS correctness verification cost
amortizes over time, and MPK-based safety hardening is effective at the cost of 25-41ns of processing
added per packet. MorphOS is 1.6X-3.0X as fast as Linux while eBPF can hurt ({10%, NAT) but also
benefit (118%, IDS) performance compared to native implementations. All of our code is available
at https://github.com/TUM-DSE/MorphOS.

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 30. Publication date: December 2025.

https://github.com/TUM-DSE/MorphOS

MorphOS : An Extensible Networked Operating System 30:3

Contributions. MorphOS makes the following contributions:

o eBPF for unikernel applications: MorphOS brings fast eBPF execution environments to
unikernels via JIT compilation to tackle their lack of reconfigurability.

e Verification with unikernels: MorphOS introduces an out-of-band verification service as
an eBPF verification model applicable for lightweight unikernels and suited to replace runtime
checks of eBPF interpreters.

e eBPF hardening for unikernels: MorphOS proposes a hardware-assisted lightweight isola-
tion mechanism suited to harden the safety of eBPF programs in unikernels against verifier bugs.

2 Background: OS Architectures for Network Stacks

Network stacks handle a wide variety of tasks and consist of three components: device drivers,
protocol layers, and application interfaces. Network stack architectures in kernels, userspace, and
unikernels differ significantly in terms of design, performance, and flexibility (see Table 1).

Kernel and user space stacks. Kernel- Feature [Kernel Stacks Userspace Stacks Unikernels
based stacks tightly integrate all three Performance Low High Specialized
components with each other and ex- Flexibility Low High App-OS codesign
pose rich functionality to general- App types |General-purpose High-performance Cloud-native
purpose applications, e.g., via stan- Table 1. Comparison of network/driver stacks.

dard POSIX interfaces [31, 95]. However, traditional kernel stacks suffer from performance overhead
due to expensive event handling (interrupts, sockets), context switches, and page table invalidations
that occur for every system call [11, 26, 55]. Userspace stacks such as DPDK [5] bypass kernel limita-
tions such as customizability and replace eventing with polling. They support high-performance
workloads, including Software Defined Networking (SDN) [7, 8, 35, 43, 90] and Network Function
Virtualization (NFV) [9, 33, 47, 50, 79, 82]. However, userspace stacks still run on traditional kernels,
which slows down interrupts [48], limits hardware-software co-design for kernel-managed resources
(e.g., IOMMU, page tables) [59, 119], and prevents fine-grained cooperative scheduling [49, 92].

Unikernel stacks. Unikernels, such as MirageOS [64], OSv [53], and Unikraft [55] are specialized
OSes designed for cloud virtualized environments. Unikernels embed themselves, including the
network stack, directly into the application as a library. By replacing system calls with library calls,
unikernels enable additional compile-time optimizations and promote the co-design of network stack
functionalities. Consequently, unikernels’ performance and lightweightness reduce the attack surface,
improve resource efficiency, and shorten boot times, making them well-suited for cloud-native apps
such as VNFs and microservices [63, 65]. To support the need for fast and scalable networking, Linux
hosts can combine unikernel VMs with fast software switches (e.g. VPP [7] with DPDK).

Unikernel performance. To demonstrate the effec- Receive Transmit Bi-directional ~ Latency
tiveness of unikernels, we evaluate the performance] | |

of Click [67] VNFs running on Unikraft and Linux. We i, Pt | |
measure the maximum receive/send rate, throughput, S5 E@j - [STE
and round-trip latency (detailed in § 8). Fig. 1 shows © Empty Firewall 1DS Empty Firewall IDS Mirror NAT Mirror NAT

the results. Unikraft sustains 2-3x higher packet re- 1 igner is batter VNE ViE Ve

ception rates and significantly improves transmitand Fig. 1. The speedup of the Unikraft unikernel over
latency performance. This improvement stems from ~the Linuxkernel on Click VNFs (64B packets).
unikernel’s single-application design, enabling a unified address space and more compiler optimiza-
tions by replacing syscalls with function calls [64]. Our unikernel-based VNF, e.g., yields to the
scheduler only after packet processing to minimize tail latencies caused by preemption.

Unikernels for cloud infrastructure. Cloud services commonly rely on shared infrastructure
provided by fast networked applications [16, 94, 98, 109]. Consolidating the infrastructure of different

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 30. Publication date: December 2025.

30:4 Peter Okelmann, llya Meignan—Masson, Masanori Misono, and Pramod Bhatotia

ClickOS [67] / BESS [43]/ Open
MorphOS ~ XDP [20] | <> [[. 0]] - [E; 2]] VPP [7] szitlz h[o] XOMBI3]
Reconfiguration of the | application kernel application
Implemented on the OS-level application-level
Routing parameters yes yes yes yes yes yes VNF dependent
Processing graph yes yes yes yes recompile no graph yes
Processing logic yes yes recompile recompile recompile dyn. libs dyn. libs

Table 2. Availability of live reconfiguration mechanisms in different VNF systems.

tenants on a single instance improves utilization and the benefit of unikernel specializations. Next,
we explain how such an approach can negatively impact flexibility and reconfigurability.

3 Motivation: Limitations of Unikernel-based Network Stacks

While unikernels are a promising approach to realizing high-performance networked applications
(§ 2), the underlying deployment models in public clouds face the following reconfigurability limita-
tions. First, although the lightweightness of unikernels enables fast startup, restarting unikernels
leads to loss of network state in memory [112]. Second, eBPF improves runtime extensibility [71], yet
ensuring safety through verification is costly due to the complexity of verifiers. Third, this complexity
also complicates the correctness of verification guarantees. We elaborate on each limitation below.

3.1 Lack of Flexible Reconfigurability of Unikernels

Reconfigurability is crucial for dynamically operating latency-sensitive networked applications.
However, unikernel compile-time optimizations require applications to recompile and reboot for
reconfiguration, introducing non-negligible overhead and potential service disruption.

Limitation of unikernel reconfiguration. To evaluate reconfiguration cost in unikernel-based
networked applications, we measure the reconfiguration times for (1) the Click [54] VNF on Linux,
(2) Click on Unikraft, and (3) Linux’s XDP [20]. XDP accelerates network functions by running eBPF
programs in the kernel, bypassing Linux’s slow network stacks [20, 44]. For Click, we measure the
time to reconfigure all elements, including application restarts. For Unikraft, this involves booting
the unikernel VM, while for XDP, we measure program replacement and verification times.

Fig. 2 shows the result. While Click’s configuration
times are comparable across platforms, restarting the

Contributor
I Qemu start B VNF configuration

N
=}
S}

. . . [0 Firmware [N First packet
Unikraft kernel alongside incurs overhead. Restarts ESS Unikraft B0 Other
[Click init

Reconfiguration [ms
=
o
)

lead to network interruptions and result in the loss

of memory state [112], further degrading network O nikraryClick Limue/Click | v Mornos
performance, particularly for stateful functions such system

as NAT or connection-based load balancers, due to ~ Fig. 2. Live reconfiguration of Click VNFs/XDP.
the disruption of connections. Linux’s promising XDP approach avoids kernel restarts using eBPF

but entails costly verification, making XDP reconfiguration slower than Click on Linux.

Meta’s highly variable use of eBPF programs exemplifies the need for frequent, state-preserving
reconfiguration, which could also unlock new use-cases [13]: On average, Meta combines three
eBPF programs for a service, but on 1 out of 20 days, 13 programs are combined, e.g., to account for
changing load scenarios, network contention, or VM migrations. Supporting reconfiguration beyond
frequencies seen today could enable new use-cases like dynamically reacting to network anomalies
by adding in-network retransmissions or blocking suspicious traffic early in the network pipeline.
Insufficient existing reconfiguration mechanisms. Actually, reconfiguration mechanisms in
current networked applications also have limitations. Table 2 summarizes the mechanisms of various
VNFs such as XDP [20], Click [54], VPP [7], Open vSwitch [90], and xOMB [3]. Many networked
applications implement reconfiguration on the application-level by exposing selected options defined
by the developer, e.g., high-level routing parameters in VPP or processing graph configuration in

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 30. Publication date: December 2025.

MorphOS : An Extensible Networked Operating System 30:5

Click/BESS [7, 43, 54]. ClickOS [67] offers a control endpoint to change processing-element-specific
parameters at runtime. While effective, this approach limits the scope to pre-envisioned use cases and
trades flexibility for implementation complexity and performance. Changing the ClickOS processing
graph, which is typically required to modify stateful algorithms, still requires a restart. Instead,
users desire an application-independent reconfiguration mechanism that facilitates state-preserving
algorithm modifications. Therefore, some VNFs employ OS-level reconfiguration. For example, XDP
allows fast updates by replacing eBPF programs in the Linux kernel (see Fig. 2). However, Linux’s eBPF
mechanisms only influence the kernel network stacks, but not applications, and introduce a costly
verification [52]. Lastly, orchestration-level reconfiguration can employ, e.g., live-VM-swapping to
mitigate the downtime of unikernel restarts. Nevertheless, state-of-the-art systems risk terminating
live connections when the NAT connection state is lost. The burden remains on developers to extend
applications with incremental migration of the critical state.

Limitation #1: Insufficient reconfiguration mechanisms. Unikernels face performance issues
with reboot-based reconfiguration and a flexibility/performance tradeoff in current live reconfigura-
tion methods, demanding a new, efficient, flexible, and state-preserving reconfiguration mechanism.

3.2 Complexity of Verifying Extensions

Linux verifier Prevail

In Linux, eBPF enables safe kernel customization, e.g.,

. . Lines of cod 16,000 000
of the network stack through event-driven execution of =~ o © ¢0°€ 6,00 62,00
. X . False positive rate 8/192 0/192
extensions. Its verification ecosystem [39, 80] ensures gyp0rts loops no yes
memory isolation, the absence of undefined behavior,and Runtime complexity o(nk) o(n®)
bounded termination, making eBPF promising for extend- Taple 3. eBPF verifiers have a large code base
ing and reconfiguring unikernel applications. that grows with increasing accuracy [39].

Challenges of integrating verifiers with unikernels. However, verifiers are inherently unsuit-
able for direct integration into unikernels for three reasons. First, resource overhead. eBPF verifiers,
such as the one in the Linux kernel, require significant memory and processing power to perform
exhaustive static analysis. This conflicts with the specialized, single-purpose nature of unikernels,
which are designed to minimize resource usage and maximize performance. In the context of VNFs,
where low-latency operation is essential, it is unacceptable that control-plane tasks such as verifica-
tion steal significant resources. Second, code complexity. The verifier’s implementation is complex and
adds substantial code size to the unikernel, contradicting the unikernel’s lightweight design. Prevail
consists of 65k lines of code and requires a C++ runtime, bloating its binary size to 2.4MB, comparable
to the Unikraft kernel. Third, isolation. Verifiers themselves are prone to malicious attacks due to
their large attack surface, as demonstrated by recent CVEs [77, 78]. Unikernels, as single-application
OSes, do not provide sufficient isolation mechanisms to safely co-locate a verifier with an application.
Table 3 summarizes the complexity of the eBPF verifiers.

Limitation #2: Impractical On-Unikernel eBPF Verification. The complexity of eBPF verifica-
tion hinders its adoption in high-performance unikernels, necessitating a lightweight mechanism to
ensure correct eBPF extensions for safe unikernel extensibility.

3.3 Verification Correctness Challenges

Limitations of eBPF verifiers. The complexity of eBPF verifiers makes it increasingly difficult
to generate proofs as eBPF programs grow more intricate. We survey related work that mentions
Common Vulnerabilities and Exposures (CVEs) [72] in existing eBPF verifiers (see § A) and find
that 23 out of 32 vulnerabilities are a result of bugs in the verifier [61, 62, 66, 117]. Despite ongoing
efforts, verification of the Linux eBPF verifier is incomplete [66, 110, 111]. As an example, Fig. 3 shows
a CVE found in the Linux verifier [76] where certain eBPF programs escape the verification. The

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 30. Publication date: December 2025.

30:6 Peter Okelmann, llya Meignan—Masson, Masanori Misono, and Pramod Bhatotia

program starts a loop at L1, loading a value from memory to be used as the loop break condition. The
verifier, unfortunately, uses an erroneous offset calculation for L1, starting the loop verification in
line 2 instead of 1. This mistake causes the verifier to wrongly prune subsequent execution paths as
unreachable. eBPF can use the subsequent iterations to generate an unverified program state that
accesses private kernel data. While memory isolation is a key source for security vulnerabilities [103],
76% of CVEs in the Linux verifier affect memory isolation [61]. | 7"~ (les +)(r10 -8) // start Loop

1
Limitation #3: Reliability & safety gaps in eBPF veri-| > if rit == oxo goto L2 // exit loop
4

fiers. Due to the complexity of eBPF verifiers, their reliability +u6a)

*(u6s *)(r1e -8) = rii

and ability to guarantee memory isolation and safety are lim-| * ot 11 // repeat Loop
6 T we =
ited. Additional memory isolation hardening is necessary for | 7 exit

network infrastructure applications shared between tenants. | Fig 3 CVE-2024-42072: The verifier

misinterprets the jump label to L1 as
4 Overview line 2, missing verification of the loop.

To overcome the limitations of specialized unikernel applications, we design MorphOS along three
design goals: (1) keeping unikernels lightweight and reconfigurable for networked applications, (2)
safe multi-tenancy through verification, and (3) hardening safety against verifier bugs.

4.1 MorphOS’s System Architecture

MorphOS is a unikernel that provides abstractions and infrastructure for applications to leverage
reconfigurable programs. Due to the multi-tenancy of cloud networked applications, traditional dy-
namically loaded libraries provide insufficient isolation guarantees. To this end, MorphOS introduces
eBPF programs (abbreviated as “programs”) as an additional layer on top of the unikernel-based ap-
plication. Fig. 4 shows its architecture, which consists of three building blocks: First, the control plane
exposes an external interface for tenants to reconfigure the unikernel by replacing eBPF programs in
the eBPF runtime. Second, the eBPF runtime maintains the active eBPF programs along with their
state. The runtime guards transitions into and out of the eBPF context to isolate tenant-provided
eBPF programs. Third, the data plane runs the core application logic in the unikernel. MorphOS
provides the application with the means to define custom hookpoints, optimized network access,
and isolated memory pools to efficiently ensure data security at the boundary of eBPF programs.

Deployment model: MorphOS as a service. We envision cloud providers to offer MorphOS-based
services as optimized applications, following existing deployment models (§ 2) and relieving cloud
tenants from developing their own. MorphOS minimizes infrastructure overhead by co-locating
cloud-tenant applications on a single, high-throughput unikernel instance that multiplexes tenant
connections between the tenant’s eBPF programs. Like the existing configuration, cloud providers
expose MorphOS’s eBPF updating mechanisms via APIs to provide flexibility to tenants.

Safely isolating eBPF. MorphOS safely isolates eBPF programs from the unikernel and its ap-
plication, which is critical in the envisioned deployment model where performance-optimized
networked applications are shared across tenants. Providers must balance tenant programmability
with maintaining the unikernel/application security and functionality. Therefore, MorphOS employs
an out-of-band Verification service that statically verifies the safety of a given eBPF program. The
eBPF JIT runtime in the unikernel restricts the eBPF program to only call safe, predefined functions.
MorphOS only accepts verified eBPF code to maintain its integrity and trust.

4.2 MorphOS Workflow

The general workflow of MorphOS applications is as follows. First (Fig. 4(1)), cloud service providers
build highly optimized networked applications such as the flexible Click [54] VNF with MorphOS and
offer them as a hosted service that is shared between tenants for efficiency. Second (2), tenants using

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 30. Publication date: December 2025.

MorphOS : An Extensible Networked Operating System 30:7

the service extend its functionality with eBPF programs and submit them to the provider’s eBPF
registry. One tenant may deploy packet filters for his endpoints to protect them against DDoS attacks,
while another may deploy deep packet inspection to secure internal traffic between his services. The
verification service certifies the safety of submitted programs and yields a cryptographic certificate
on success. Third (3), tenants insert verified eBPF programs from their collection into MorphOS via
a dedicated network link managed by the Control endpoint. Fourth (4), the control plane validates
the certificate, JIT-compiles the eBPF bytecodes into native instructions, and attaches the verified
program to the corresponding hookpoint in the application. Next, we describe how providers make
applications more reconfigurable using MorphOS hookpoints.

Control plane eBPF runtime

4.3 Programming and Threat Model Ve MorphOS Unikernel VM ~_

¢—@03"5§ﬁ \

Data plane

Provider: Application programming. MorphOS
enables providers to build networked applications

that process network input and return responses.
It offers a POSIX-compatible development environ-

Control endpoint

Verified, native
instructions

eBPF program

MPK domain

i | |Hookpoint #1
! o0

Application

ment with libc to simplify app creation. For high- -
performance processing of received packets (5), ap- TS k\ .
plications can also directly access network drivers | o | Pt e
via the lightweight NetStack. MorphOS provides iso- | L ; maps | | [P

lated buffer pools for eBPF I/O to enable efficient %" e
data sharing with the MPK isolation domains that : : i

run eBPF programs. To allow for reconfigurability
and extensibility, providers can embed eBPF hook-
points into their applications that are called (6) as the prover
application processes network traffic. Additionally,) ..,A
MorphOS includes predefined eBPF function types programs [enans
and helper functions that cloud providers can extend Fig. 4. MorphOS makes specialized unikernels
to suit specific application requirements. configurable and safely extensible with eBPF.

Validator |
Q| T A

NetStack

Driver Dri:/er

@ programs +

eBPF registry

=) eBPF request
{'—'megmm Tverification™”

& Certificate q—issue

@p Packets

A4

=

Network

compile

Tenant: Configurability through eBPF programming. Tenants write eBPF programs to cus-
tomize provider applications at defined hookpoints. These programs are compiled from languages
like C and Rust and use provider-defined helper functions for safe OS access. To ensure safety, tenants
acquire a certificate from the provider’s verification service when pushing to the eBPF registry. Once
certified, tenants update eBPF programs in MorphOS at runtime to modify application functionality.

Threat model. MorphOS faces a primary threat from cloud tenants deploying potentially malicious
or buggy eBPF programs. These untrusted programs could access private application data, cause
denial of service by hogging CPU or memory resources, or breach the sandbox and VM isolation
to compromise system integrity. The model assumes a trusted cloud provider manages the eBPF
verification service and applications while tenants develop eBPF programs to customize functionality.
Although the verifier is the initial defense, MorphOS does not consider it infallible. Thus, runtime
checks for resource consumption and hardware-assisted isolation (e.g., MPK) are crucial for an
additional protection layer to detect successful attacks. Aside from the MorphOS instance, the verifier
exposes a significant attack surface to tenants. MorphOS decouples the verifier into a stand-alone
service to be deployed on hardened clusters, e.g., in isolated and ephemeral VMs. Orthogonal work
hardens against VM escape attacks and hardware side-channels, and improves cryptographic ciphers.

4.4 Keyldeas
We present the following key ideas of MorphOS to make cloud apps extensible and reconfigurable.

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 30. Publication date: December 2025.

30:8 Peter Okelmann, llya Meignan—Masson, Masanori Misono, and Pramod Bhatotia

#1 OS-level support for application reconfigurability. Due to their single-application nature,
unikernels have drawbacks in terms of flexibility and reconfigurability. Unfortunately, application-
level configuration mechanisms are often incomplete and lack programmability (§ 3.1).

MorphOS overcomes these limitations with a generic live-reconfiguration mechanism built into
the OS that makes VM/application restarts obsolete and avoids losing state. MorphOS exposes ac-
cess to eBPF hookpoints, which unikernel applications use to make algorithms and decisions fully
programmable and reconfigurable in a live manner (see § 5.1, § 5.3).

#2 Out-of-band eBPF verification. Powerful eBPF verifiers have large code bases and exhibit high
runtime complexity, impeding their integration into kernels. Prevail [39] approaches this problem by
moving verification into a dedicated process [70]. Unfortunately, this approach does not generalize
to unikernels, which do not support multi-processing (§ 3.2). Furthermore, this approach requires
integrating many libraries that the verifier depends on into the unikernel as well.

MorphOS decouples resource-intensive verifiers from the unikernel through cryptographic cer-
tificates and instead runs them out-of-band on different hosts (§ 5.4). Ahead-of-time verification
accelerates updating eBPF programs significantly while adhering to the design goals of unikernels.

#3 eBPF hardening with MPK. Current real-world eBPF verifiers are still improving their safety
guarantees (§ 3.3) because the verification process is complex. eBPF verification is hard to implement
correctly, as demonstrated by related work that has repeatedly uncovered flaws in verifiers [28, 61,
62, 117]. Unverified JIT compilers add another potential point for safety violations.

Today’s eBPF systems are therefore not fit to enforce isolation guarantees between cloud providers
and tenants. Deployment scenarios envisioned for MorphOS require safety hardening that goes
beyond correctness guarantees. MorphOS hardens the unikernel against eBPF escaping verification
with MPK-based memory isolation (§ 5.5).

Type Signature
5 Design morphos_set_cert_authority(ca);
morphos_register_helper(id, helper);
5.1 The OS Abstraction Load €BFE s rphos_share_map(id, nap_name, id);

morphos_load(id, file, signature, use_jit);

MorphOS presents a dual-layer abstraction model morphos.altoc inpat_befO;

designed to enable dynamic system reconfiguration Runtime _ morphos_call(program, inputbuf, params ...)
through eBPF-based extensibility. Existing systems Table 4. MorphOS hookpoints allow apps to safely
lack the necessary runtime definition necessary to ¢xtend their functionality with eBPF programs.
integrate eBPF, the verifier, and MPK hardening. The first layer, MorphOS hookpoints, concerns
the application developer. The MorphOS hookpoint abstraction provides the developer with conve-
niently accessible infrastructure to seamlessly enrich applications with reconfigurable functionality
implemented with eBPF. The second layer, MorphOS eBPF runtime, concerns the cloud tenant who
uses MorphOS applications. In this layer, MorphOS provides a base runtime environment with
essential but generic functionality for tenants to extend applications. Application developers can
extend the eBPF runtime layer with their application-specific helper functions. MorphOS exposes
each layer via a dedicated interface, which we describe next.

MorphOS system APIs. Table 4 presents the system API for MorphOS applications. The APIincludes
functions for loading, managing, and executing eBPF programs while ensuring security through
certificate validation and controlled resource sharing. morphos_set_cert_authority() setsatrusted
certificate authority for eBPF program signatures. Next, the application customizes the eBPF runtime
by registering native helper functions that eBPF programs can invoke (morphos_register_helper())
and setting up eBPF state to be shared between invocations and programs (morphos_share_map()).
The morphos_load() function handles program loading consisting of just-in-time (JIT) compilation,
relocation of executable code, and linking available helper functions. At runtime, morphos_alloc_
_input_buf() ensures secure memory allocation for input data, and morphos_call() executes eBPF

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 30. Publication date: December 2025.

MorphOS : An Extensible Networked Operating System 30:9

programs with specified parameters. Together, these functions provide arobust and secure mechanism
for extending applications in MorphOS, balancing flexibility with strict security guarantees.

MorphOS eBPF interface. From the eBPF context, MorphOS and other external functionality are
only available through safe wrappers called helper functions. The MorphOS eBPF runtime interface
defines these helper functions for the eBPF program (Table 5). The interface is divided into four types:
the (a) eBPF entry point, (b) OS functionality, (c) network buffer management, and (d) eBPF maps. (a)
The entry point defines the eBPF program’s entry function signature, which includes pointers to
input buffers, as well as packet metadata such as port numbers. (b) The OS-type API offers several
default helper functions to get time, randomness, or do logging. (c) The network buffer API offers
helpers such as bpf_grow_buffer() to dynamically adjust packet buffer sizes (e.g., for encapsulating
packets in tunnel protocol headers). (d) Map helpers enable accessing inter-invocation state through
lists or key-value maps. Functions like bpf_map_lookup/update_elem() allow eBPF programs to
access and modify data in maps, supporting tasks like flow tracking and stateful processing.

5.2 Network Stack - ,
ype Signature

MorphOS introduces NetStack, a robust and modular struct bpf_context {

. . . voidx packet, void packet_end,
network architecture designed to support dynamic Ue4 input port)
reconfigurability and high-performance packet pro- bpf_progran(input: bpf_context) -> u4
cessing. The NetStack abstraction encompasses dri- B)OS bpf_ktine_get ns() -> u6s

K K bpf_get_prandom_u32() -> u32
vers, network protocol stacks, application buffer man-
agement, and event callbacks. Applications use this
abstraction to either choose a minimal set of stack #[map(NANE)]

e e static NAME: {HashMap<K, V>|Array<A>}
components to minimize overhead or use the full bpf_map. Lookup_eLem(NANE, key: K) -5 V

A) Entrypoint

bpf_grow_buffer(front: usize,

©)Netbufs back: usize) -> usize

. D) M
stack through the POSIX-like API. Central to the de- a bj;—:‘:f—v“p‘ﬁ“:g—jeu’giN)AME' key: K,
sign of NetStack are the buffer management, the stack bpf_map_delete_elem(NANE, key: K)
component bypass, and the event model. Table 5. MorphOS eBPF runtime interface.

Central buffer management. The eBPF context, the application, and the operating system share a
central memory pool (isolated buffer pool in Fig. 4). This design eliminates the need for redundant
memory copies between the application, MorphOS, and eBPF runtimes, enabling zero-copy data
transfers. Consequently, applications minimize overhead while maintaining buffer isolation with
hardware-assisted memory hardening (§ 5.5).

Network stack bypass. By allowing applications to bypass protocol stacks, MorphOS achieves
functionality akin to common kernel-bypass architectures such as DPDK [5]. MorphOS ensures
efficient resource and power usage outside of maximum-throughput scenarios by maintaining
interrupt-driven event processing for packet handling. Although 32 of 70 DPDK drivers support
interrupt mode [4], many DPDK applications do not use them, significantly degrading application
packing density. Unlike DPDK, MorphOS optimizes its event scheduling and buffer management
for the single-CPU architecture of unikernels, enabling cloud providers to substantially increase
VM-to-host ratios [55]. The MorphOS approach contrasts with architectures of general-purpose OSes
like Linux, where the network stack introduces significant overhead due to its size and reliance on
system calls. These factors increase latency and additional memory copies, hindering performance.

Event model optimized for performance. MorphOS minimizes event handling by directly
invoking application callbacks in a run-to-completion model, reducing overhead and eliminating
memory copies. It is optimized for single-core execution, maximizing lock-free parallelism when
scaling out. This design aligns with the cloud computing paradigm of scaling by allocating more
instead of larger VMs. NetStack is particularly advantageous for applications where traffic flows are
often partitioned in hardware (e.g., using RSS [69] or flow steering VNFs [9]), ensuring that each

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 30. Publication date: December 2025.

30:10 Peter Okelmann, llya Meignan—Masson, Masanori Misono, and Pramod Bhatotia

CPU core requires only local state. We envision MorphOS deployments to follow these principles,
leveraging its lock-free network stack to maximize performance and scalability.

5.3 eBPF Extensibility

The MorphOS abstraction (§ 5.1) increases the reconfigurability of unikernel-based applications
through three key components: (1) the endpoint for reconfiguration, (2) the JIT compiler for updating
eBPF programs, and (3) the state management for preserving information across reconfigurations.

Reconfiguration mechanism. MorphOS enables tenants to reconfigure applications over the
network via the control endpoint by replacing eBPF programs. This process works as follows. Tenants
first send a new eBPF program to the verification service. Once verified, this eBPF program is stored
in the provider’s registry. Subsequently, tenants send a reconfiguration command to the MorphOS
management network interface to request to set the new program for a certain eBPF hookpoint. Upon
the request, MorphOS loads the eBPF program from the registry, verifies its certificate, relocates its
code in memory, instantiates eBPF maps, and JIT-compiles the eBPF instructions into native code.
Lastly, MorphOS installs the JITted eBPF program into the corresponding eBPF hookpoint.

This registry-based design helps reconfigurations to scale out and remain predictable. First,
MorphOS separates the program upload from the reconfiguration command to enable timely insertion
of the same program into many MorphOS instances without resubmitting the entire program each
time. Second, the design decouples the tenant’s eBPF program upload speed from the time-critical
reconfiguration path and relieves the tenant from managing a catalogue of verified programs.

JIT compiler. The JIT compiler translates eBPF bytecodes into native instructions to enable high-
performance eBPF processing. The design of eBPF bytecode inherently accounts for JIT compila-
tion [51], allowing the compiler to map most eBPF registers directly to native registers in a one-to-one
manner. For stack management, the compiler allocates per-program memory regions at page gran-
ularity to support MPK isolation (as discussed in § 5.5). To handle the helper functions calls from
the eBPF program, the JIT compiler inserts trampoline code. This trampoline saves eBPF register
states and converts them to match x86 calling conventions, addressing differences in stack alignment,
register preservation, and argument passing. It restores the original state after the function call
completes. During MorphOS context switches between eBPF and unikernel environments, the system
updates MPK permissions to harden isolation between their distinct stacks and memory domains.

State migration. MorphOS maintains state during eBPF program updates by sharing eBPF maps.
Each map gets a unique ID that stays constant across updates. When a new program loads, maps with
existing IDs are reused to preserve the state. For data structure changes, new maps can be defined,
and developers handle lazy state migration to them in the new eBPF program.

5.4 Decoupled eBPF Verification

Verification of eBPF for unikernels is challenging because automated verification is time and resource-
intensive (§ 3.2). MorphOS decouples verification from eBPF injection and enables out-of-band
verification to generate a catalog of verified programs to be inserted on-demand.

Verification goals. The MorphOS verifier guarantees that three protection goals hold: The verifier
maintains the operational integrity of the application and Unikernel, even when programmable by
cloud tenants via MorphOS’s eBPF elements. For confidentiality, the verifier ensures eBPF programs
never access data from other MorphOS hookpoints or neighboring tenants. Finally, the verifier
ensures availability by verifying that eBPF programs will not cause system crashes or block execution,
preventing malicious tenants from denying service in shared instances.

Verification process. With MorphOS, the cloud provider offers a verification process that operates
outside of unikernels and yields a cryptographic certificate attesting to the program’s safety.

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 30. Publication date: December 2025.

MorphOS : An Extensible Networked Operating System 30:11

We base our verification process on the Prevail [39] verifier to ensure these goals. The verifier
guarantees integrity, confidentiality, and bounded execution through a precise analysis of all possible
execution flows, and it proves that no illegal memory access occurs. Prevail achieves that by keeping a
detailed track of memory values and their possible ranges while avoiding path explosion by merging
states across loop iterations. We extend Prevail to understand the guarantees of memory regions
used by output values of MorphOS helper functions and to capture the semantics of eBPF function
parameters, such as buffer pointers, used in MorphOS hookpoints. § B details how MorphOS supports
eBPF that contains loops, receives packet contexts as input, and accesses shared maps.

Finally, users submit the eBPF executable along with the certificate to the MorphOS application.
The application checks the certificate using asymmetric cryptography and attaches the eBPF program
to the target hookpoint. Thanks to the out-of-band design of the verifier, cloud providers can flexibly
dedicate resources to the verification process.

5.5 Hardware-Assisted Memory Safety Isolation properties Verifier MPK
The complexity of verification raises concerns about the Helper bugs X (/maps)
correctness of its process (§ 3.3). To mitigate this issue, JITbugs x

we employ hardware-assisted memory isolation with 1soate unikernel from eBPF
Isolate between eBPF

MPK [2, 4.16, 31], Which .is available on x86 and A.RM. Table 6 Temporal safety (packet buffers)
summarizes the isolation properties we provide. Read uninitialized memory X

Termination X

MPK. MPK uses the upper bits of the page table entry to
assign one of 16 domains to each page (PKey). The CPU’s
PKRU register configures the permission for each domain
(read/write bits) for the executing thread. When programs access pages that violate the permissions
set in that register, the CPU triggers an exception. Programs use the WRPKRU instruction to update the
PKRU register. This operation is fast (~20 cycles) because it does not require TLB flushes [84].

Table 6. Verification properties of Pre-
vail [39] and hardening with MPK [2, 46].

MPK isolation workflow. When desirable, service providers enable MPK hardening. MorphOS
then assigns distinct PKeys to separate memory of the unikernel, applications, eBPF programs, and
individual packet buffers. Fig. 5 illustrates the PKey assignments for two tenants sharing a MorphOS
instance: K for the unikernel memory, K; for an eBPF program’s memory, and K for another cloud
tenant’s eBPF program. Packet buffers are individually protected using the remaining keys K3_1s.

By default, MorphOS sets permissions in PKRU to Permissions Pages PKey
Pk, granting access to all memory regions. As the T X
application processes packets, some of them trigger ik Bt A — K,
eBPF hookpoints that invoke eBPF programs. When
executing eBPF programs, MorphOS updates PKRU - T - X,

. . . enter e

to operate under P.gpr permissions, which can only stack [Pkt eBPF stack K
access its own memory K;j and its current packet eBPF maps K
buffer K;,,. When calling helper functions, MorphOS run eBPF _g_,eBpF TR K,
changes the MPK domain to Py, allowing the helper [rewmto ¢l «
3

to access OS and application services, and switches
Packet buffer #m K,

back to P,gpfr on return. 1
To mitigate the limited number of hardware PKeys, Kis

MorphOS proposes probabilistic eBPF isolation by
assigning Kj_15 pseudo-randomly to eBPF programs
and packet buffers, accepting permission overlaps. § C explains how unlikely the success of attacks
becomes with probabilistic isolation. Alternatively, we can also resort to libMPK [84] to achieve deter-
ministic and scalable eBPF isolation, overcoming hardware PKey limits through key virtualization.

Fig. 5. Permissions and PKeys used for MPK.

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 30. Publication date: December 2025.

30:12 Peter Okelmann, llya Meignan—Masson, Masanori Misono, and Pramod Bhatotia

To support packet batching with probabilistic isolation, MorphOS needs to keep all buffers of a
batch in the same MPK domain. When the application splits up batches, e.g., to submit a portion of
packets to a different branch of the processing graph, MorphOS needs to change the domain of the
diverging buffers. Due to a lack of batching support in the Click version ported to Unikraft, we omit
a further exploration of batching designs.

(]
6 MO rph OS fO r VN FS '& Tenants MorphOS: unikernel VM

We envision MorphOS to be used for a variety of & rconbgre - E

cloud applications such as Virtual Network Func- — hockpoint” || nework
tions (VNFs) [9, 15, 42, 60, 88, 98, 101] and network- ﬁgg) EE’*@] | pocsig

optimized microservices [64, 102]. Performance- | /i verfieq maive i upers| erap [E)packes
critical VNFs particularly profit from MorphOS be- | ;s program Bjooms O Click element

cause VNFs offer a paradigm shift from traditional, MPK domain Click VNF

hardware-centric network infrastructure to agile,
scalable, and software-defined network functions Fig- 6. MorphOS for optimized VNFs as a service.
running in cloud VMs. This section explains how we extend the Click [54] VNF with eBPF hookpoints
and implement firewalls, Network Address Translation (NAT) [29], and Deep Packet Inspection
(DPI) [27, 56, 120] that are fully reconfigurable while retaining state.

Integrating Click. We integrate the Click [54] modular software router with MorphOS as a suitable
base for highly flexible and reconfigurable VNFs (see Fig. 6). Click users define a packet processing
graph by (re-)configuring directional edges between processing modules called elements to assemble
or change higher-level VNFs. For MorphOS, we add eBPF-based elements to be integrated into
processing graphs with different capabilities ranging from filtering (BPFFilter), over packet sorting
(BPFClassifier), to modifying packets (BPFRewriter).

Network

Fast, JITed firewalls. Click already offers firewall functionality using elements that iterate over
Access Control Lists (ACLs). However, configurable systems such as ACL interpreters prioritize
runtime flexibility over compile-time optimizations, resulting in sub-optimal performance [33].
MorphClick instead uses a BPFClassifier element where firewall rules are implemented as code
that is JIT compiled, eliminating the ACL interpreter and reducing processing overhead.

Frequent reconfiguration of DPI. DPI describes network functions that extensively analyze
packet contents, e.g., to enhance firewalls, detect DDoS traffic, or search patterns for Intrusion
Detection Systems (IDSs). DPI is hard to generalize for configurability via parameters or data
tables, as inspection logic depends on inspected protocols and the application data, leading to either
incomplete or inefficient implementations. We instead design a DPI prototype for MorphClick using
the MorphOS BPFFilter element with a string matching algorithm implemented in eBPF. Fast
reconfiguration of MorphClick control flow empowers VNF users to quickly update processing logic
to react to changing traffic patterns or apply new defense mechanisms, e.g., against DDoS attacks.

Retaining NAT state. NAT, rate-limiting, and traffic shaping VNFs track per-connection state
that is crucial for reliable network connectivity. Restarting such VNFs drops that state, thereby
terminating all current connections (NAT) or degrading network conditions (limiting, shaping).
Using MorphClick, we build an eBPF-based VNF that implements the NAT core using the MorphOS
BPFRewriter element. This design replaces VNF restarts with state-preserving eBPF updates while
maintaining flexible reconfigurability, therefore eliminating problems induced by state loss.

7 Implementation

We implement a prototype of MorphOS based on the Unikraft [55] unikernel (v0.16.3). MorphOS
implements a verification service based on the Prevail [39] verifier (9f25cee). We port Click [54]

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 30. Publication date: December 2025.

MorphOS : An Extensible Networked Operating System 30:13

(a538483) as VNF and uBPF [6] (2c2a682) as a eBPF JIT engine to Unikraft. We extend Unikraft’s lib-
click [97] and integrate it with MorphOS’s eBPF hookpoints (§ 6). MorphOS optimizes transmissions
from Click to Unikraft by introducing batching and reducing calls to the cooperative scheduler be-
tween transmissions. Furthermore, we extend scheduling regarding the ToDevice element to support
pull and not only push operations, a critical capability necessary for many single-threaded packet
processing graphs. Finally, MorphOS integrates the isolated buffer pool and leverages Unikraft’s
cooperative scheduler to optimize network performance.

The eBPF runtime. MorphOS supports both eBPF interpretation and JIT compilation via uBPF [6].
We extend uBPF to support read-only ELF sections, such as .data, that occur in our eBPF binaries
compiled from Rust. MorphOS loads the new program by parsing the ELF file to locate function and
data sections, copies them into unikernel memory, and rewrites eBPF instructions to access or call
the relocated items. eBPF programs specify the used map types at compile time in the .maps ELF
segment and can read/insert at runtime with helper functions. The eBPF map definitions from the
.maps section are not relocated but used to allocate and instantiate maps.

The verification service. MorphOS provides an executable that verifies eBPF programs and yields
a cryptographic signature if safety can be proven. To conduct verification with Prevail, MorphOS
creates an eBPF platform consisting of program input layout, eBPF maps, and helper functions:
First, we define the context struct that acts as input to each function and points to the bounds of
the accessible packet buffer. Second, we define the in-memory layouts of available eBPF map types.
Third, we define helper function signatures and their parameter types and associated semantics so
that Prevail can verify assumptions made by the helper implementations. If program verification
succeeds, the service uses OpenSSL to sign a SHA256 hash of the verified program with the ECDSA
key of the unikernel administrator (i.e., the cloud provider).

Hardening with MPK. To use MPK, we set the user flag in the page table entries since MPK only
works for user pages on our CPUs. MorphOS modifies the allocator to place eBPF-related memory
on its own set of pages and tag them with MPKeys. MorphOS splits the stack of eBPF programs
from the unikernels stack and switches between them when entering P.gpr contexts so that the
unikernels and eBPF stack are isolated from each other with different MPK permissions. In addition,
MorphOS modifies the unikernel and JIT compiler to switch PKRU between the respective eBPF
context permissions P,ppr necessary for a given input buffer and unikernel context permissions P,.

8 Evaluation

We evaluate MorphOS across the following dimensions: lightweight reconfigurability (§ 8.1), correct-
ness and safety (§ 8.2), and performance (§ 8.3).

Experimental setup. We conduct measurements on two hosts, where one acts as a network load
generator (Linux pktgen [108]) and the other one hosts the VM under test. The hosts are connected
with 10G links via Intel X520 NICs. For comparability, we run both Linux and Unikraft baselines in
single-core VMs because Unikraft is designed for single-core cloud VMs. The hosts use 256GB of
RAM and an Intel Xeon 5317 CPU. We use Linux 6.6.1 and Qemu 8.2.6. We provide networking to the
VM via VPP 24.06 using DPDK drivers and vhost-user, which we find is faster than Linux network
virtualization with vhost.

Experiment variants. We evaluate three VNF systems: as baselines we use Click on Linux (Linux)
and Click on Unikraft (Unikraft) where all Click elements are implemented natively. We compare
them to MorphClick (MorphOS), which implements core processing in eBPF without hardening. Each
system supports our implemented network function use cases (§ 6): a firewall that alternates between
permitting and dropping traffic to UDP/TCP ports, an Intrusion Detection System (IDS) that applies

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 30. Publication date: December 2025.

30:14 Peter Okelmann, llya Meignan—Masson, Masanori Misono, and Pramod Bhatotia

AhoCorasick [1] string matching to identify malicious packet contents, a simple ethernet packet
reflector, and a hairpin Network Address Translation (NAT) that accesses state for every packet.

8.1 Lightweight Reconfigurability —
RQ1. Does MorphOS improve live-reconfigurability of % ” fgﬁ;o 2 ey
unikernel-based applications while maintaining their £ EO goog%@c =S Firewall-2
lightweightness? We evaluate VNF reconfiguration 3 100 SERINA KO i
time and VM image lightweightness. i , ‘)4 Eaﬁ Tﬁuﬁ@r Nf\T
Linux/Click Unikraft/Click MorphOS

Reconfiguration time. We evaluate the reconfig-
urability of VNFs by measuring the time required to
update packet processing logic across three different
reconfiguration mechanisms. We use the baselines from § 3.1 and compare them with the time that
MorphOS takes to replace eBPF programs. Fig. 7 shows the result. We observe that reconfiguring Click
on Unikraft takes 7x longer than Linux because it takes 230ms to restart the unikernel. On Linux,
Click reconfiguration times vary depending on the complexity of the VNF configuration. The NAT
configuration takes 100ms to configure many protocols and services known by Linux, while Unikraft
avoids this overhead by limiting the set of services. MorphOS achieves the fastest reconfiguration,
requiring only 18% of Linux’s reconfiguration time, because it only updates eBPF programs without
updating whole components. MorphOS spends 45% of the time on network communication with the
control endpoint to trigger the update and only 3.6ms for loading and updating the new eBPF program.
The example of firewalls with 1000 rules (firewall-1k) demonstrates the advantages of efficient eBPF
reconfiguration as the baselines spend an additional 20ms on initializing the firewall rules.

1 Lower is better System

Fig. 7. Live reconfiguration times of VNFs.

VM image size. We investigate the impact of Mor- unikrar J2.87 MB
phOS on the VM size by measuring disk image sizes. MO;T:iiz::iz_l\:;lOQ e
Images consist of the unikernel or Linux distribution jyun oS 61332 M8
image containing Click, as well as the configuration o 1;30 200 300 400 500 600 700
files and eBPF programs. We compare MorphOS with owerEReRE image Size (1E)
the Unikraft unikernel and Linux-based OSes (Alpine
Linux (3.19) and Ubuntu (22.04 LTS)).

Fig. 8 shows that MorphOS adds around 2MB to the Unikraft image size, with OpenSSL as the
biggest contributor. MorphOS is orders of magnitude smaller than even lightweight Linux images

such as Alpine, but also than Ubuntu, which bundles many more tools, features, and a larger kernel.

Fig. 8. VM image size of Click in Unikraft and
different Linux distributions.

RQ1 takeaway: MorphOS significantly reduces reconfiguration time by making even VNF logic
live-reconfigurable with eBPF, without sacrificing the lightweightness of unikernels.

8.2 Correctness and Safety

RQ2. Does MorphOS effectively enforce correctness and harden safety, and what overhead does the
hardening induce? We measure verification-related contributors to reconfiguration time and analyze
how they may amortize over time. We then evaluate the effectiveness of our MPK hardening.

Verification-induced reconfiguration time. We conduct white-box measurements to analyze
where MorphOS spends time while replacing eBPF programs. First, we identify and measure tasks
related to enforcing safety. Second, we calculate how the reconfiguration time can be amortized over
time.

There are two sources for reconfiguration time: the eBPF reconfiguration, where the program is
replaced, and MorphOS’s out-of-band verification. We subdivide both sources into various sub-tasks
and measure their execution time for the NAT VNF.

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 30. Publication date: December 2025.

MorphOS : An Extensible Networked Operating System 30:15

First, Fig. 9 (a) shows that the verification time is (a) Safety overhead (b Overhead amortization
significantly longer than the reconfiguration time. 7
During out-of-band preparation of eBPF programs, 3 **]
25% of time is spent on verification, and 69% of time ~ * 000
. . . 0 T T T T T T
is spent on the compilation. On the other hand, dur- Outofband 1month 1/hour 1s
. . T . . 1 Lower is better Reconfiguration Replacement frequency
ing reconfiguration, the validation of the verification _ —

. . ompile ‘alidate paate frequency
certificate accounts for only 5% of the time. B Link = T — month
 Verify I Control 1/day

Second, we analyze the amortization of out-of-
band tasks. Out-of-band verificationis only necessary Fig. 9. (a) Time spent on ensuring safety during
when developers update and recompile the eBPF code. out-of-band verification and live.—reconfigu ration.
A case study about tens of eBPF programs at Meta re- (b) Out-of-band overhead amortizes over replace-

. ments of eBPF programs.

veals that reconfigurations happen more frequently

than code updates: Meta employs NetEdit [13] to manage frequent and dynamic eBPF reconfigura-
tions, which surpass manual review capabilities. Despite this, Meta changes eBPF code only with
a frequency f; up to once a month [13]. On the other hand, the reconfiguration overhead occurs
with a frequency f;. The out-of-band verification time ¢, amortizes over multiple reconfigurations to
ta =ty fy/ fr. Fig. 9 (b) shows the amortized overhead ¢, for different reconfiguration frequencies.
For daily reconfigurations (f; =1/day), the original 335ms out-of-band cost reduces to 0.5ms. In such
cases, MorphOS achieves reconfiguration in 3.4ms, rendering compilation and verification costs
negligible through amortization.

Hardening with MPK. Next, we evaluate the effec- MorphOS

: , . CVEs . Category
tiveness of MorphOS’s use of MPK to harden security. hardening
We survey literature that reports bugs in existing Verifier: register value tracking: e.g.
eBPF systems [61, 62, 66, 117]. We then classify the 12 yes verifierpredicts eBPFnull check to pass
bugs by attack vector and test if MorphOS’s MPK when it must not

only map Helper functions: return value must
get helpers point to eBPF memory
Verifier: branch pruning;: the verifier’s

isolation protects against such attacks.
Fig. 10 shows our identified bug classes. The ma-

jority (69%) originate in verifier bugs that mispredict 6 ves model of jumps matches the JIT com-
how register values change or how the execution piler’s model (see Fig. 3)
flow branches. Further, 25% of bugs stem from faulty =~ yes Verifier: context value tracking: con-
helper functions that do not adhere to the model guar- text pointer must not be null

2 no Verifier: crash

anteed to the verifier.
We then assess against which bug classes the Mor- Fig. 10. MorphOS’s hardening with MPK is effec-
phOS hardening is effective. For bugsin register value ~ tive against common vulnerabilities (CVEs § A).
tracking, branch pruning, or context value tracking,
MPK effectively protects MorphOS by triggering an
emergency stop once the malicious program proceeds
to access private memory. MorphOS also detects pro-
grams that exploit eBPF map get helpers to return
private data as they run in the isolated eBPF MPK do- Fig. 11. MorphOS (firewall) with and without
main. Against bugs in other helpers, our hardening MPK-based hardening.
is ineffective because these helpers must run in the un-isolated domain to access the unikernel or
application memory. To summarize, the hardware-assisted safety hardening of MorphOS protects
against a big class of attacks, effectively improving the safety of applications.

ooe—.

N

—
| —e— Morphos S
MorphOS + MPK B
------- Link speed (10G)
T T T

0 256 512 748 1024 1280 1518
Higher is better Packet size

—

o

—Throughput [Mpps]

MPK performance overhead. We evaluate the overhead of the MPK hardening using the firewall
VNF. We compare MorphOS maximum receive throughput with and without MPK hardening enabled.
Fig. 11 presents the results. For small-sized packets, MPK introduces up to 5-7.5% overhead (25-41ns

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 30. Publication date: December 2025.

30:16 Peter Okelmann, llya Meignan—Masson, Masanori Misono, and Pramod Bhatotia
@ Receive (Empty, Firewall, IDS) Bi-directional (Mirror, NAT) w
g e F 10 102
Z,] : [
‘g‘_ L5 Max. offered load (1. 3Mpps) L L s ‘g’_
5 Bl smm. | LM 0 Jm HEE, §
3, MK el a1 o Lulbl Bl Lo 3
£ 64 256 1024 1508 256 1024 1508 S
i Transmit (Empty, Firewall, IDS) w

[} =

s A 103

=24 2 Throughput IMpps] v Throughput [Gbit/s]
2 5 3

§ 11 € = Linux =1 Empty =1 Mirror

2ol 3 [0 MorphOS [Firewall [Z3 NAT

= £ [Unikraft £33 IDS

T Higher is better Packet size [B]

Fig. 12. VNF throughput with MorphOS, Linux, and Unikraft. MorphOS has 1.5%-2.9% lower per-packet
overhead than Linux. For larger packet sizes, throughput in Gbit/s v approaches the 10Gbit link speed.

per packet) on the WRPKRU instruction inserted by the JIT compiler to change PKey permissions
around the eBPF program. As the packet size and processing time increase towards the 10Gbit link
speed, the hardening overhead diminishes and becomes negligible.

RQ2 takeaway: MorphOS out-of-band verification amortizes over time, making verification costs
negligible for scenarios found in the industry. MorphOS hardens effectively against several safety
violation categories at the cost of up to 41ns additional processing time per packet.

8.3 Performance

RQ3. Does MorphOS’s use of eBPF introduce performance overhead? First, we evaluate the throughput
and latency of our use cases. Second, we compare parametrized firewalls with our eBPF-based one.

Throughput. We evaluate the throughput of five VNFs. We measure receive and transmit per-
formance by generating and counting packets with Click on the system under test. For the two
inherently bidirectional VNFs, we generate and measure traffic on the load generator.

Fig. 12 shows the results. Full-sized packets saturate the 10G links in most cases, but smaller
packets reveal per-packet overhead differences. Linux is 1.6X-3.0X slower than MorphOS for receive
and transmit. We observe the biggest speedup for the bidirectional mirror VNF. Even though we limit
the offered load to 1.3Mpps, the Linux kernel stack steals the application’s CPU time to drop packets
due to the lack of cooperative scheduling. MorphOS use of eBPF incurs at most 10% overhead (NAT)
compared to native Unikraft. The JIT compiler minimizes overhead and, in some cases, improves
performance. For the IDS VNF, compiler optimizations enable MorphOS to outperform Unikraft
by 18%, as unmodified Click algorithms lack awareness of runtime configuration during compile
time. While our 10G link does impose a limitation in some tests with big packets, we expect our
comparison to unmodified Unikraft to remain representative: Our results for different packet sizes
support, that MorphOS does not add overhead that depends on packet size, such as packet copies.

Latency. We evaluate latency by measuring the — Linux: mirror Linux: NAT Unikratt: mirror
round-trip delay of packets with the bi-directional =~ M®rOmTTr T MOROS M -7- Dmeem BT
VNFs. We use MoonGen [30] to sample latency at

1000Hz under 100kpps of load and present the cu-
mulative distribution function (CDF) of the latency o
histogram. Fig. 13 shows two tight groupings of distri- o bztéto 400 600 800 1000 1200 1400
butions: the slower Linux VNFs, and the faster Mor- oweris berer ateney (k)

phOS and Unikraft ones. The distributions within ~Fig-13. End-to-end latency of bi-directional VNFs.
each grouping match closely because the latencies are dominated by the OS and network stack
instead of the VNF logic. Overall, Unikraft and MorphOS reduce median latencies by 28% over Linux.

50

CDF (%)

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 30. Publication date: December 2025.

MorphOS : An Extensible Networked Operating System 30:17

Large firewalls. Finally, we evaluate the effectiveness of MorphOS’s JIT compilation by comparing
large firewalls with native Click. The MorphOS firewall is defined in eBPF code and JIT compiled,
whereas the native one is configured via Access Control List (ACL) parameters. We add port filter rules
that alternate between dropping and passing packets and send traffic to these ports in a round-robin
fashion. Fig. 14 shows that while Click’s native firewall performance decreases with more rules,
MorphOS consistently performs best. The native Click throughput approaches zero beyond 10k
rules, whereas MorphOS with JIT-compiled eBPF maintains 1.2Mpps. This is due to eBPF compilers
optimizing firewall logic into match-case constructs with constant lookup time, avoiding iteration
over large rule tables. Running the firewall with an eBPF interpreter confirms the scalability of eBPF,
albeit with lower base performance.

g;_ | *.\\ —e— Linux | -ome MorphOS no JIT
RQ3 takeaway: For throughput, Click VNFs with MorphOS | £ T Unikraft -+ MorphOS
are 1.6x-3.0x faster than with Linux and on par with Unikraft. % 1 .\
While eBPF can have up to 10% overhead, our IDS and fire- é . T———o
wall studies show that JIT-compiled eBPF can also improve | 10 10 10° 10°
.) . T Higher is better Firewall rules
performance over highly parametrized traditional VNFs.

Fig. 14. Receive throughput depending
on the number of installed firewall rules.

9 Related work

OS designs for network-intensive applications. Several operating systems present optimizations
to accelerate networked applications, e.g., through more efficient intra-host communication [63, 67],
data processing [12, 32, 47], and scheduling [49, 92]. Specifically, ClickOS [67] focuses on opti-
mizing the operating system’s and Xen’s [10] network stacks for Click, while MorphOS primarily
addresses the runtime inflexibility of unikernels in supporting dynamic, stateful, network-intensive
applications. Notably, MorphOS uses Click solely as a representative application, and its reconfig-
uration mechanism is fundamentally decoupled from the unikernel application itself. MOS [47]
is a library OS optimized for data-plane performance that provides the high-level infrastructure
necessary to develop high-level middleboxes. Shinjuku [49] improves tail latencies by fine-grained
preemption of long-lasting requests. MorphOS is orthogonal to this work because its APIs facilitate
extending the unikernel with similar optimizations. However, MorphOS adds the goal of application
reconfigurability and optimizes the network stack to safely support dynamic eBPF quickly.

Unikernels. Unikernels, while appealing, face practical challenges in production systems due
to limited reconfigurability, unlike traditional servers with tools like AWS Systems Manager or
GCP Guest Agent [17, 40, 87, 96, 99, 104, 105]. Existing efforts like ulO [71] extend unikernel
functionality using eBPF interpretation [68], though primarily for auxiliary tasks like inspection
and debugging rather than core application logic. While ulO enables additional task execution,
invoking these functionalities from the application side requires further integration. VampOS [112]
enables individually restarting kernel components. MorphOS distinguishes itself by leveraging
JIT-compiled eBPF for flexible, high-performance packet processing. Unlike ulO, which uses MPK
to help programmers voluntarily limit programming error impact, MorphOS transparently applies
MPK to harden eBPF program isolation between inserted programs and the core application — a
critical requirement for multi-tenant networked applications.

eBPF for high-performance networking. eBPF is widely used for high-performance networking
in Linux environments, as seen with Cilium’s cloud-native solutions [21] and Chaining-Box’s
disaggregated service chaining [18]. Janus [36] further demonstrates its use in real-time systems and
SPRIGHT [93] for high-performance serverless functions. Similar to these efforts, MorphOS utilizes
eBPF for fast packet processing, but within the context of networked unikernel applications.

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 30. Publication date: December 2025.

30:18 Peter Okelmann, llya Meignan—Masson, Masanori Misono, and Pramod Bhatotia

Following its success on Linux, eBPF has been adopted in non-standard Linux environments,
notably Windows [70], which combines standalone eBPF interpreters (uBPF [6]) and verifiers (Prevail
[39]). Additionally, Craun et al. [25] propose decoupled eBPF verification for Linux-based embedded
systems. MorphOS also integrates eBPF [6] and Prevail [39] for its eBPF ecosystem. However,
MorphOS distinguishes itself by presenting a concrete eBPF verification integration specifically for a
unikernel-based system.

Safe execution of networked applications. Several prior studies investigate techniques for
the safe execution of networked applications, including the use of memory-safe programming
languages [22, 64, 83], compilers [14, 34, 100], and OS-level sandboxing mechanisms [38, 79, 106, 118].
SURE [85] isolates a secure portion of a unikernel from the user application with MPK for serverless
computing. ShieldBox [107] and Trusted Click [24] protect the integrity of the packet processing
elements themselves by running Click elements in secure SGX [23, 58] enclaves. Compared to these
studies, MorphOS leverages the eBPF runtime and its verifier to ensure safe execution.

Other studies explore the verification of the functional correctness of networked applications [91,
115]. Vigor [115] expands automatic verification to VNFs written in C. TinyNF [91] formally verifies
the correctness of the VNF’s underlying driver. These works are orthogonal to our work.

Driven by the several vulnerabilities found in Linux’s eBPF verifier (e.g., [73-75]), several recent
works propose sandboxing JIT-compiled eBPF code to add additional isolation guarantees by utilizing
MPK on x86-64 (Moat [62]), or ARM PAC (Hive [117]) and ARM MTE (SafeBPF [61]), or employing SFI
(KFlex [28]) for Linux eBPF. Our work also uses MPK hardening, but closes design gaps specific to data-
intensive VNFs by integrating it with the MorphOS NetStack. Additionally, we fundamentally design
MorphOS to scale to many program instances by combining eBPF with probabilistic MPK hardening,
which contrasts with the poor scalability of eBPF-free MPK networking, such as Pegasus [86].

10 Conclusion

In conclusion, MorphOS proposes a new OS design that enables runtime reconfiguration and extensi-
bility for applications such as Virtual Network Functions (VNFs) while maintaining the advantages of
unikernels. By leveraging eBPF for dynamically updatable code execution, out-of-band verification
to enforce correctness, and hardware-assisted safety isolation, MorphOS ensures that applications
remain dependable across reconfigurations. The evaluation results highlight the ability to reduce
reconfiguration time, amortize verification cost, and output Linux in terms of performance and
lightweightness. MorphOS establishes a foundation for live-reconfigurable application logic while
maintaining the lightweight characteristics of unikernels, paving the way for more adaptive and
efficient networked operating systems.

Artifact and supplementary material. MorphOS is available at https://github.com/TUM-DSE/
MorphOS. The appendix covers additional details for the eBPF vulnerabilities CVEs and associated
eBPF verification in MorphOS.

Acknowledgments

We thank our shepherd and the anonymous reviewers for their helpful comments. This work was
supported in part by an ERC Starting Grant (ID: 101077577) and the Chips Joint Undertaking (JU),
European Union (EU) HORIZON-JU-IA, under grant agreement No. 101140087 (SMARTY), the Intel
Trustworthy Data Center of the Future (TDCoF), and Google Research Grants. The authors acknowl-
edge the financial support by the Federal Ministry of Research, Technology and Space of Germany in
the programme of “Souveran. Digital. Vernetzt.”. Joint project 6G-life, project identification number:
16KISK002.

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 30. Publication date: December 2025.

https://github.com/TUM-DSE/MorphOS
https://github.com/TUM-DSE/MorphOS

MorphOS : An Extensible Networked Operating System 30:19

References

[1] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: an aid to bibliographic search. Commun. ACM, 18(6),
1975.

[2] AMD. AMDé64 Architecture Programmer’s Manual Volume 2: System Programming Revision 3.40 — Section 5.6.7.
https://docs.amd.com/v/u/en-US/24593_3.42, 2023. Accessed: 2025-05-28.

[3] James W. Anderson, Ryan Braud, Rishi Kapoor, George Porter, and Amin Vahdat. xOMB: extensible open middleboxes
with commodity servers. In Proceedings of the Eighth ACM/IEEE Symposium on Architectures for Networking and
Communications Systems. ACM, 2012.

[4] DPDK authors. Overview of networking drivers. https://doc.dpdk.org/guides/nics/overview.html, 2025. Accessed:

2025-05-28.

DPDK authors. Dpdk: Accelerating network performance. https://www.dpdk.org/, [n.d.]. Accessed: 2025-05-28.

UBPF authors. Iovisor/ubpf: Userspace eBPF VM. https://github.com/iovisor/ubpf, [n.d.]. Accessed: 2025-05-28.

[7] David Barach, Leonardo Linguaglossa, Damjan Marion, Pierre Pfister, Salvatore Pontarelli, and Dario Rossi. High-Speed
Software Data Plane via Vectorized Packet Processing. IEEE Communications Magazine, 56(12), 2018.

[8] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast userspace packet processing. In 2015 ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS). IEEE, 2015.

[9] Tom Barbette, Cyril Soldani, and Laurent Mathy. Combined Stateful Classification and Session Splicing for High-Speed

NFV Service Chaining. IEEE/ACM Transactions on Networking, 29(6), 2021.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew

Warfield. Xen and the Art of Virtualization. In Proceedings of the 19th ACM Symposium on Operating Systems Principles.

ACM, 2003.

Alexander Beifuf, Daniel Raumer, Paul Emmerich, Torsten M. Runge, Florian Wohlfart, Bernd E. Wolfinger, and Georg

Carle. A study of networking software induced latency. In 2015 International Conference and Workshops on Networked

Systems (NetSys). IEEE, 2015.

Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis, and Edouard Bugnion. IX: A

Protected Dataplane Operating System for High Throughput and Low Latency. In 11th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 14). USENIX, 2014.

Theophilus A. Benson, Prashanth Kannan, Prankur Gupta, Balasubramanian Madhavan, Kumar Saurabh Arora, Jie

Meng, Martin Lau, Abhishek Dhamija, Rajiv Krishnamurthy, Srikanth Sundaresan, Neil Spring, and Ying Zhang. NetEdit:

An Orchestration Platform for eBPF Network Functions at Scale. In Proceedings of the ACM SIGCOMM 2024 Conference.

ACM, 2024.

[14] Kartal Kaan Bozdogan, Dimitrios Stavrakakis, Shady Issa, and Pramod Bhatotia. SafePM: a sanitizer for persistent

memory. In Proceedings of the Seventeenth European Conference on Computer Systems. ACM, 2022.
[15] Anat Bremler-Barr, Yotam Harchol, and David Hay. OpenBox: A Software-Defined Framework for Developing,
Deploying, and Managing Network Functions. In Proceedings of the 2016 ACM SIGCOMM Conference. ACM, 2016.
[16] Marc Brooker, Mike Danilov, Chris Greenwood, and Phil Piwonka. On-demand Container Loading in AWS Lambda. In
2023 USENIX Annual Technical Conference (USENIX ATC 23). USENIX, 2023.

[17] Bryan Cantrill. Unikernels are Unfit for Production. https://www.tritondatacenter.com/blog/unikernels-are-unfit-for-

production, 2016. Accessed: 2025-05-28.

Matheus S. Castanho, Cristina K. Dominicini, Magnos Martinello, and Marcos A. M. Vieira. Chaining-Box: A Transparent

Service Function Chaining Architecture Leveraging BPF. IEEE Transactions on Network and Service Management, 19(1),

2022.

[19] Yang Chen and Xinfeng Shu. Formal verification of eBPF program security based on PTL. In Proceedings of the 2023 6th

International Conference on Artificial Intelligence and Pattern Recognition. ACM, 2024.

—_ —
(= NS, |
—

—
—
(=]

=

—
—
—_

—

(12

—

(13

=

—
—
>}

=

[20] Diptanu Gon Choudhury. XDP-Programmable Data Path in the Linux Kernel. login Usenix Mag., 43(1), 2018.

[21] Cilium. Cilium - eBPF-based Networking, Observability, Security. https://cilium.io/, [n. d.]. Accessed: 2025-05-28.

[22] Snabb Contributors. Snabb: Simple and fast packet networking. https://github.com/snabbco/snabb, 2024. Accessed:
2025-05-28.

[23] Victor Costan and Srinivas Devadas. Intel SGX Explained. Cryptology ePrint Archive, Paper 2016/086, 2016. Accessed:
2025-05-28.

[24] Michael Coughlin, Eric Keller, and Eric Wustrow. Trusted Click: Overcoming Security issues of NFV in the Cloud.

In Proceedings of the ACM International Workshop on Security in Software Defined Networks & Network Function
Virtualization. ACM, 2017.

[25] Milo Craun, Adam Oswald, and Dan Williams. Enabling eBPF on Embedded Systems Through Decoupled Verification.
In Proceedings of the 1st Workshop on EBPF and Kernel Extensions. ACM, 2023.

[26] Willem de Bruijn. Zero-copy networking. LWN.net, 726917, 2017.

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 30. Publication date: December 2025.

https://doi.org/10.1145/360825.360855
https://docs.amd.com/v/u/en-US/24593_3.42
https://doi.org/10.1145/2396556.2396566
https://doi.org/10.1145/2396556.2396566
https://doc.dpdk.org/guides/nics/overview.html
https://www.dpdk.org/
https://github.com/iovisor/ubpf
https://doi.org/10.1109/MCOM.2018.1800069
https://doi.org/10.1109/MCOM.2018.1800069
https://doi.org/10.1109/ANCS.2015.7110116
https://doi.org/10.1109/TNET.2021.3099240
https://doi.org/10.1109/TNET.2021.3099240
https://doi.org/10.1145/945445.945462
https://doi.org/10.1109/NetSys.2015.7089065
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://doi.org/10.1145/3651890.3672227
https://doi.org/10.1145/3651890.3672227
https://doi.org/10.1145/3492321.3519574
https://doi.org/10.1145/3492321.3519574
https://doi.org/10.1145/2934872.2934875
https://doi.org/10.1145/2934872.2934875
https://www.usenix.org/conference/atc23/presentation/brooker
https://www.tritondatacenter.com/blog/unikernels-are-unfit-for-production
https://www.tritondatacenter.com/blog/unikernels-are-unfit-for-production
https://doi.org/10.1109/TNSM.2021.3122135
https://doi.org/10.1109/TNSM.2021.3122135
https://doi.org/10.1145/3641584.3641768
https://www.usenix.org/publications/login/spring2018/choudhury
https://cilium.io/
https://github.com/snabbco/snabb
https://eprint.iacr.org/2016/086
https://doi.org/10.1145/3040992.3040994
https://doi.org/10.1145/3609021.3609299
https://lwn.net/Articles/726917/

30:20 Peter Okelmann, llya Meignan—Masson, Masanori Misono, and Pramod Bhatotia

[27] Gonzalo De La Torre Parra, Paul Rad, and Kim-Kwang Raymond Choo. Implementation of deep packet inspection
in smart grids and industrial Internet of Things: Challenges and opportunities. Journal of Network and Computer
Applications, 135, 2019.

[28] Kumar Kartikeya Dwivedi, Rishabh Iyer, and Sanidhya Kashyap. Fast, Flexible, and Practical Kernel Extensions. In
Proceedings of the ACM SIGOPS 30th Symposium on Operating Systems Principles. ACM, 2024.

[29] Kjeld Borch Egevang and Pyda Srisuresh. Traditional IP Network Address Translator (Traditional NAT). RFC 3022,
2001. Accessed: 2025-05-28.

[30] Paul Emmerich, Sebastian Gallenmiiller, Daniel Raumer, Florian Wohlfart, and Georg Carle. MoonGen: A Scriptable
High-Speed Packet Generator. In Proceedings of the 2015 Internet Measurement Conference. ACM, 2015.

[31] Paul Emmerich, Daniel Raumer, Alexander Beifuf3, Lukas Erlacher, Florian Wohlfart, Torsten M. Runge, Sebastian
Gallenmiiller, and Georg Carle. Optimizing latency and CPU load in packet processing systems. In 2015 International
Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS). IEEE, 2015.

[32] D.R.Engler, M. F. Kaashoek, and J. O’Toole. Exokernel: an operating system architecture for application-level resource
management. In Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles. ACM, 1995.

[33] Alireza Farshin, Tom Barbette, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kosti¢. PacketMill: toward per-Core
100-Gbps networking. In Proceedings of the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 2021.

[34] Martin Fink, Dimitrios Stavrakakis, Dennis Sprokholt, Soham Chakraborty, Jan-Erik Ekberg, and Pramod Bhatotia.
Cage: Hardware-Accelerated Safe WebAssembly. In Proceedings of the 23rd ACM/IEEE International Symposium on Code
Generation and Optimization. ACM, 2025.

[35] Xenofon Foukas, Navid Nikaein, Mohamed M. Kassem, Mahesh K. Marina, and Kimon Kontovasilis. FlexRAN: A Flexible
and Programmable Platform for Software-Defined Radio Access Networks. In Proceedings of the 12th International on
Conference on Emerging Networking EXperiments and Technologies. ACM, 2016.

[36] Xenofon Foukas, Bozidar Radunovic, Matthew Balkwill, and Zhihua Lai. Taking 5G RAN Analytics and Control to a
New Level. In Proceedings of the 29th Annual International Conference on Mobile Computing and Networking. ACM, 2023.

[37] Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Sendergaard, and Peter J. Stuckey. Exploiting Sparsity in
Difference-Bound Matrices. In Xavier Rival, editor, Static Analysis. Springer Berlin Heidelberg, 2016.

[38] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash, Robert Grandl, Junaid Khalid, Sourav Das, and
Aditya Akella. OpenNF: enabling innovation in network function control. In Proceedings of the 2014 ACM Conference on
SIGCOMM. ACM, 2014.

[39] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina Narodytska, Jorge A. Navas, Noam Rinetzky, Leonid Ryzhyk, and
Mooly Sagiv. Simple and Precise Static Analysis of Untrusted Linux Kernel Extensions. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation. ACM, 2019.

[40] Google. Guest environment | Compute Engine Documentation | Google Cloud. https://cloud.google.com/compute/
docs/images/guest-environment, [n. d.]. Accessed: 2025-05-28.

[41] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas. The SeaHorn Verification Framework. In
Daniel Kroening and Corina S. Pasareanu, editors, Computer Aided Verification. Springer International Publishing, 2015.

[42] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee. Network Function Virtualization: Challenges and
Opportunities for Innovations. IEEE Communications Magazine, 53(2), 2015.

[43] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han, and Sylvia Ratnasamy. Softnic: A software nic to

augment hardware. Technical Report UCB/EECS-2015-155, EECS Department, University of California, Berkley, 2015.

https://courses.grainger.illinois.edu/ece598hpn/fa2022/papers/softnic.pdf.

Oliver Hohlfeld, Johannes Krude, Jens Helge Reelfs, Jan Riith, and Klaus Wehrle. Demystifying the Performance of

XDP BPF. In 2019 IEEE Conference on Network Softwarization (NetSoft). IEEE, 2019.

[45] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. NetVM: High Performance and Flexible Networking Using

Virtualization on Commodity Platforms. IEEE Transactions on Network and Service Management, 12(1), 2015.

Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Order

Number: 253668-078US — Chapter 4.6.2 Protection Keys. https://cdrdv2.intel.com/v1/dl/getContent/671190, 2022.

Accessed: 2025-05-28.

[47] Muhammad Asim Jamshed, YoungGyoun Moon, Donghwi Kim, Dongsu Han, and KyoungSoo Park. mOS: A Reusable
Networking Stack for Flow Monitoring Middleboxes. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). USENIX, 2017.

[48] Yunhong Jiang and Wei Wang. Towards Low Latency Interrupt Mode DPDK. In Proceedings of the DPDK Summit 2017,
2017.

[49] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David Maziéres, and Christos Kozyrakis. Shinjuku:
Preemptive Scheduling for usecond-scale Tail Latency. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19). USENIX, 2019.

[44

flan)

(46

=

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 30. Publication date: December 2025.

https://www.sciencedirect.com/science/article/pii/S1084804519300815
https://www.sciencedirect.com/science/article/pii/S1084804519300815
https://doi.org/10.1145/3694715.3695950
https://www.rfc-editor.org/info/rfc3022
https://doi.org/10.1145/2815675.2815692
https://doi.org/10.1145/2815675.2815692
https://doi.org/10.1109/SPECTS.2015.7285275
https://doi.org/10.1145/224056.224076
https://doi.org/10.1145/224056.224076
https://doi.org/10.1145/3445814.3446724
https://doi.org/10.1145/3445814.3446724
https://doi.org/10.1145/3696443.3708920
https://doi.org/10.1145/2999572.2999599
https://doi.org/10.1145/2999572.2999599
https://doi.org/10.1145/3570361.3592493
https://doi.org/10.1145/3570361.3592493
https://doi.org/10.1007/978-3-662-53413-7_10
https://doi.org/10.1007/978-3-662-53413-7_10
https://doi.org/10.1145/2619239.2626313
https://doi.org/10.1145/3314221.3314590
https://cloud.google.com/compute/docs/images/guest-environment
https://cloud.google.com/compute/docs/images/guest-environment
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1109/MCOM.2015.7045396
https://doi.org/10.1109/MCOM.2015.7045396
https://courses.grainger.illinois.edu/ece598hpn/fa2022/papers/softnic.pdf
https://doi.org/10.1109/NETSOFT.2019.8806651
https://doi.org/10.1109/NETSOFT.2019.8806651
https://doi.org/10.1109/TNSM.2015.2401568
https://doi.org/10.1109/TNSM.2015.2401568
https://cdrdv2.intel.com/v1/dl/getContent/671190
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/jamshed
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/jamshed
http://fast.dpdk.org/events/slides/DPDK-2017-06-Low_Latency_Interrupt_Mode.pdf
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://www.usenix.org/conference/nsdi19/presentation/kaffes

MorphOS : An Extensible Networked Operating System 30:21

[50] Georgios P. Katsikas, Tom Barbette, Dejan Kosti¢, Rebecca Steinert, and Gerald Q. Maguire Jr. Metron: NFV Service
Chains at the True Speed of the Underlying Hardware. In 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18). USENIX, 2018.

[51] Linux kernel developers. BPF Instruction Set Architecture (ISA). https://docs.kernel.org/bpf/standardization/
instruction-set.html, [n.d.]. Accessed: 2025-05-28.

[52] Linux kernel developers. eBPF verifier. https://docs.kernel.org/bpf/verifierhtml, [n. d.]. Accessed: 2025-05-28.

[53] AviKivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don Marti, and Vlad Zolotarov. OSv—Optimizing the
Operating System for Virtual Machines. In 2014 USENIX Annual Technical Conference (USENLX ATC 14). USENIX, 2014.

[54] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. The Click Modular Router. ACM
Trans. Comput. Syst., 18(3), 2000.

[55] Simon Kuenzer, Vlad-Andrei Badoiu, Hugo Lefeuvre, Sharan Santhanam, Alexander Jung, Gaulthier Gain, Cyril Soldani,

Costin Lupu, Stefan Teodorescu, Costi Raducanu, Cristian Banu, Laurent Mathy, Razvan Deaconescu, Costin Raiciu,

and Felipe Huici. Unikraft: Fast, Specialized Unikernels the Easy Way. In Proceedings of the 16th European Conference

on Computer Systems. ACM, 2021.

Sailesh Kumar, Jonathan Turner, and John Williams. Advanced algorithms for fast and scalable deep packet inspection.

In Proceedings of the 2006 ACM/IEEE Symposium on Architecture for Networking and Communications Systems. ACM,

2006.

Tytus Kurek. Unikernel Network Functions: A Journey Beyond the Containers. IEEE Communications Magazine, 57(12),

2019.

Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach, Pramod Bhatotia, Pascal Felber, and Christof

Fetzer. SGXBOUNDS: Memory Safety for Shielded Execution. In Proceedings of the Twelfth European Conference on

Computer Systems. ACM, 2017.

Viktor Leis and Christian Dietrich. Cloud-Native Database Systems and Unikernels: Reimagining OS Abstractions for

Modern Hardware. Proc. VLDB Endow., 17(8), 2024.

Hao Li, Yihan Dang, Guangda Sun, Guyue Liu, Danfeng Shan, and Peng Zhang. LemonNFV: Consolidating Heteroge-

neous Network Functions at Line Speed. In 20th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 23). USENIX, 2023.

[61] Soo Yee Lim, Tanya Prasad, Xueyuan Han, and Thomas Pasquier. SafeBPF: Hardware-assisted Defense-in-depth for

eBPF Kernel Extensions. In Proceedings of the 2024 on Cloud Computing Security Workshop. ACM, 2024.

Hongyi Lu, Shuai Wang, Yechang Wu, Wanning He, and Fengwei Zhang. MOAT: Towards Safe BPF Kernel Extension.

In Proceedings of the 33rd USENIX Security Symposium. USENIX, 2024.

Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas Gazagnaire, David Sheets, Dave Scott, Richard

Mortier, Amir Chaudhry, Balraj Singh, Jon Ludlam, Jon Crowcroft, and Ian Leslie. Jitsu: Just-In-Time Summoning of

Unikernels. In Proceedings of the 12th USENLX Symposium on Networked Systems Design and Implementation. USENIX,

2015.

[64] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David J. Scott, Balraj Singh, Thomas Gazagnaire, Steven
Smith, Steven Hand, and Jon Crowcroft. Unikernels: library operating systems for the cloud. In Vivek Sarkar and
Rastislav Bodik, editors, Architectural Support for Programming Languages and Operating Systems. ACM, 2013.

[65] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu,
and Felipe Huici. My VM is Lighter (and Safer) than Your Container. In Proceedings of the 26th Symposium on Operating
Systems Principles. ACM, 2017.

[66] Tina Marjanov and Alice Hutchings. SoK: Digging into the Digital Underworld of Stolen Data Markets . In 2025 IEEE
Symposium on Security and Privacy (SP). IEEE, 2025.

[67] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda, Roberto Bifulco, and Felipe Huici.
ClickOS and the Art of Network Function Virtualization. In Proceedings of the 11th USENIX Symposium on Networked
Systems Design and Implementation. USENIX, 2014.

[68] Steven McCanne and Van Jacobson. The bsd packet filter: a new architecture for user-level packet capture. In Proceedings
of the USENIX Winter 1993 Conference Proceedings on USENIX Winter 1993 Conference Proceedings. USENIX, 1993.

(56

—

[57

—

(58

[

[59

—

(60

=

[62

—

(63

—_

[69] Microsoft. Introduction to receive side scaling (rss). https://learn.microsoft.com/en-gb/windows-hardware/drivers/
network/introduction-to-receive-side-scaling, 2022. Accessed: 2025-05-28.
[70] Microsoft. eBPF for Windows. https://microsoft.github.io/ebpf-for-windows/, [n.d.]. Accessed: 2025-05-28.

[71] Masanori Misono, Peter Okelmann, Charalampos Mainas, and Pramod Bhatotia. ulO: Lightweight and Extensible
Unikernels. In Proceedings of the 15th ACM Symposium on Cloud Computing. ACM, 2024.

[72] MITRE. Common vulnerabilities and disclosures. https://cve.mitre.org/, 2025. Accessed: 2025-05-28.

[73] MITRE. CVE-2020-27194. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27194, [n.d.]. Accessed:
2025-05-28.

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 30. Publication date: December 2025.

https://www.usenix.org/conference/nsdi18/presentation/katsikas
https://www.usenix.org/conference/nsdi18/presentation/katsikas
https://docs.kernel.org/bpf/standardization/instruction-set.html
https://docs.kernel.org/bpf/standardization/instruction-set.html
https://docs.kernel.org/bpf/verifier.html
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://doi.org/10.1145/354871.354874
https://doi.org/10.1145/3447786.3456248
https://doi.org/10.1145/1185347.1185359
https://doi.org/10.1109/MCOM.001.1900138
https://doi.org/10.1145/3064176.3064192
https://doi.org/10.14778/3659437.3659462
https://doi.org/10.14778/3659437.3659462
https://www.usenix.org/conference/nsdi23/presentation/li-hao
https://www.usenix.org/conference/nsdi23/presentation/li-hao
https://doi.org/10.1145/3689938.3694781
https://doi.org/10.1145/3689938.3694781
https://www.usenix.org/conference/usenixsecurity24/presentation/lu-hongyi
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/madhavapeddy
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/madhavapeddy
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/3132747.3132763
https://doi.ieeecomputersociety.org/10.1109/SP61157.2025.00037
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
https://learn.microsoft.com/en-gb/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://learn.microsoft.com/en-gb/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://microsoft.github.io/ebpf-for-windows/
https://doi.org/10.1145/3698038.3698518
https://doi.org/10.1145/3698038.3698518
https://cve.mitre.org/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27194

30:22 Peter Okelmann, llya Meignan—Masson, Masanori Misono, and Pramod Bhatotia

[74] MITRE. CVE-2020-8835. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8835, [n. d.]. Accessed: 2025-05-

28.

[75] MITRE. CVE-2021-31440. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31440, [n.d.]. Accessed:
2025-05-28.

[76] MITRE. CVE-2024-42072. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-42072, [n.d.]. Accessed:
2025-05-28.

[77] MITRE. CVE-2024-43837. https://www.cve.org/CVERecord?id=CVE-2024-43837, [n. d.]. Accessed: 2025-05-28.

[78] MITRE. CVE-2024-45020. https://www.cve.org/CVERecord?id=CVE-2024-45020, [n. d.]. Accessed: 2025-05-28.

[79] Priyanka Naik, Akash Kanase, Trishal Patel, and Mythili Vutukuru. libVNF: Building Virtual Network Functions Made
Easy. In Proceedings of the 2018 ACM Symposium on Cloud Computing. ACM, 2018.

[80] George C Necula and Peter Lee. Safe kernel extensions without run-time checking. In 2nd USENIX Symposium on
Operating Systems Design and Implementation (OSDI 96). USENIX, 1996.

[81] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and Christof Fetzer. Intel MPX Explained: A
Cross-layer Analysis of the Intel MPX System Stack. Proc. ACM Meas. Anal. Comput. Syst., 2(2), 2018.

[82] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda, Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker.
E2: a framework for NFV applications. In Proceedings of the 25th Symposium on Operating Systems Principles. ACM,
2015.

[83] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, and Scott Shenker. NetBricks: Taking the V
out of NFV. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). USENIX, 2016.

[84] Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon, and Taesoo Kim. libmpk: Software Abstraction for Intel Memory
Protection Keys (Intel MPK). In Proceedings of the 2019 USENIX Annual Technical Conference. USENIX, 2019.

[85] Federico Parola, Shixiong Qi, Anvaya B. Narappa, K. K. Ramakrishnan, and Fulvio Risso. SURE: Secure Unikernels Make
Serverless Computing Rapid and Efficient. In Proceedings of the 2024 ACM Symposium on Cloud Computing. ACM, 2024.

[86] Dinglan Peng, Congyu Liu, Tapti Palit, Anjo Vahldiek-Oberwagner, Mona Vij, and Pedro Fonseca. Pegasus: Transparent
and Unified Kernel-Bypass Networking for Fast Local and Remote Communication. In Proceedings of the Twentieth
European Conference on Computer Systems. ACM, 2025.

[87] Per Buer. Unikernels Aren’t Dead, They're Just Not Containers. https://www.infoq.com/presentations/unikernels-
includeos/, 2019. Accessed: 2025-05-28.

[88] Francisco Pereira, Fernando M.V. Ramos, and Luis Pedrosa. Automatic Parallelization of Software Network Functions.
In 21st USENIX Symposium on Networked Systems Design and Implementation (NSDI 24). USENIX, 2024.

[89] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishnamurthy, Thomas Anderson, and
Timothy Roscoe. Arrakis: The Operating System Is the Control Plane. ACM Trans. Comput. Syst., 33(4), 2015.

[90] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J. Jackson, Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex Wang, Joe
Stringer, Pravin Shelar, Keith Amidon, and Martin Casado. The Design and Implementation of Open vSwitch. login
Usenix Mag., 40(2), 2015.

[91] Solal Pirelli and George Candea. A Simpler and Faster NIC Driver Model for Network Functions. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX, 2020.

[92] George Prekas, Marios Kogias, and Edouard Bugnion. ZygOS: Achieving Low Tail Latency for Microsecond-scale
Networked Tasks. In Proceedings of the 26th Symposium on Operating Systems Principles. ACM, 2017.

[93] Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-chin Wang, and K. K. Ramakrishnan. SPRIGHT: Extracting the Server from
Serverless Computing! High-performance eBPF-based Event-driven, Shared-Memory Processing. In Proceedings of the
ACM SIGCOMM 2022 Conference. ACM, 2022.

[94] Tiago Rosado and Jorge Bernardino. An overview of openstack architecture. In Proceedings of the 18th International
Database Engineering & Applications Symposium. ACM, 2014.

[95] Jamal Hadi Salim, Robert Olsson, and Alexey Kuznetsov. Beyond softnet. In 5th Annual Linux Showcase & Conference
(ALS 01). USENIX, 2001.

[96] Jerod Santo. The Big Idea Around Unikernels. https://changelog.com/posts/the-big-idea-around-unikernels, 2021.
Accessed: 2025-05-28.

[97] Florian Schmidt, Stefan Jumarea, and Felipe Huici. Click for Unikraft. https://github.com/unikraft/lib-click, 2019.
Accessed: 2025-05-28.

[98] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K. Reiter, and Guangyu Shi. Design and Implementation of a
Consolidated Middlebox Architecture. In 9th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 12). USENIX, 2012.

[99] Amazon Web Service. AWS Systems Manager Documentation. https://docs.aws.amazon.com/systems-manager/index.
html, [n. d.]. Accessed: 2025-05-28.

[100] Dimitrios Stavrakakis, Alexandrina Panfil, MJin Nam, and Pramod Bhatotia. SPP: Safe Persistent Pointers for Memory
Safety. In 2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE, 2024.

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 30. Publication date: December 2025.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8835
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31440
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-42072
https://www.cve.org/CVERecord?id=CVE-2024-43837
https://www.cve.org/CVERecord?id=CVE-2024-45020
https://doi.org/10.1145/3267809.3267831
https://doi.org/10.1145/3267809.3267831
https://www.usenix.org/legacy/publications/library/proceedings/osdi96/full_papers/necula/html/
https://doi.org/10.1145/3224423
https://doi.org/10.1145/3224423
https://doi.org/10.1145/2815400.2815423
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/panda
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/panda
https://www.usenix.org/conference/atc19/presentation/park-soyeon
https://www.usenix.org/conference/atc19/presentation/park-soyeon
https://doi.org/10.1145/3698038.3698558
https://doi.org/10.1145/3698038.3698558
https://doi.org/10.1145/3689031.3696083
https://doi.org/10.1145/3689031.3696083
https://www.infoq.com/presentations/unikernels-includeos/
https://www.infoq.com/presentations/unikernels-includeos/
https://www.usenix.org/conference/nsdi24/presentation/pereira
https://doi.org/10.1145/2812806
https://www.usenix.org/publications/login/apr15/pfaff
https://www.usenix.org/conference/osdi20/presentation/pirelli
https://doi.org/10.1145/3132747.3132780
https://doi.org/10.1145/3132747.3132780
https://doi.org/10.1145/3544216.3544259
https://doi.org/10.1145/3544216.3544259
https://doi.org/10.1145/2628194.2628195
https://www.usenix.org/legacy/publications/library/proceedings/als01/full_papers/jamal/jamal_html/napi2.html
https://changelog.com/posts/the-big-idea-around-unikernels
https://github.com/unikraft/lib-click
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/sekar
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/sekar
https://docs.aws.amazon.com/systems-manager/index.html
https://docs.aws.amazon.com/systems-manager/index.html
https://doi.org/10.1109/DSN58291.2024.00019
https://doi.org/10.1109/DSN58291.2024.00019

MorphOS : An Extensible Networked Operating System 30:23

[101] Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and Hongxin Hu. NFP: Enabling Network Function Parallelism in NFV. In
Proceedings of the Conference of the ACM Special Interest Group on Data Communication. ACM, 2017.

Ariel Szekely, Adam Belay, Robert Morris, and M. Frans Kaashoek. Unifying serverless and microservice workloads
with SigmaOS. In Proceedings of the ACM SIGOPS 30th Symposium on Operating Systems Principles. ACM, 2024.
Laszl6 Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eternal War in Memory. In 2013 IEEE Symposium on
Security and Privacy. IEEE, 2013.

Jorg Thalheim, Peter Okelmann, Harshavardhan Unnibhavi, Redha Gouicem, and Pramod Bhatotia. VMSH: Hypervisor-
Agnostic Guest Overlays for VMs. In Proceedings of the 17th European Conference on Computer Systems. ACM, 2022.
Jorg Thalheim, Pramod Bhatotia, Pedro Fonseca, and Baris Kasikci. Cntr: Lightweight OS Containers. In Proceedings of
the 2018 USENIX Annual Technical Conference. USENIX, 2018.

Kashyap Thimmaraju, Saad Hermak, Gabor Retvari, and Stefan Schmid. MTS: Bringing Multi-Tenancy to Virtual
Networking. In 2019 USENIX Annual Technical Conference (USENLX ATC 19). USENIX, 2019.

Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnautov, Pramod Bhatotia, and Christof Fetzer. ShieldBox:
Secure Middleboxes using Shielded Execution. In Proceedings of the Symposium on SDN Research. ACM, 2018.

Daniel Turull, Peter Sjédin, and Robert Olsson. Pktgen: Measuring performance on high speed networks. Computer
Communications, 82, 2016.

Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris Grot. Benchmarking, analysis, and
optimization of serverless function snapshots. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM, 2021.

Harishankar Vishwanathan, Matan Shachnai, Srinivas Narayana, and Santosh Nagarakatte. Sound, Precise, and Fast
Abstract Interpretation with Tristate Numbers. In 2022 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE, 2022.

Harishankar Vishwanathan, Matan Shachnai, Srinivas Narayana, and Santosh Nagarakatte. Verifying the Verifier:
eBPF Range Analysis Verification. In Constantin Enea and Akash Lal, editors, Computer Aided Verification. Springer
Nature Switzerland, 2023.

Takeru Wada and Hiroshi Yamada. Reboot-based Recovery of Unikernels at the Component Level. In Proceedings of the
54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. IEEE, 2024.

Nicholas C. Wanninger, Joshua J. Bowden, Kirtankumar Shetty, Ayush Garg, and Kyle C. Hale. Isolating functions at the
hardware limit with virtines. In Proceedings of the Seventeenth European Conference on Computer Systems. ACM, 2022.
[114] Jianing You, Kang Chen, Laiping Zhao, Yiming Li, Yichi Chen, Yuxuan Du, Yanjie Wang, Luhang Wen, Keyang Hu,
and Keqiu Li. AlloyStack: A Library Operating System for Serverless Workflow Applications. In Proceedings of the
Twentieth European Conference on Computer Systems. ACM, 2025.

Arseniy Zaostrovnykh, Solal Pirelli, Rishabh R. Iyer, Matteo Rizzo, Luis Pedrosa, Katerina J. Argyraki, and George
Candea. Verifying software network functions with no verification expertise. In Tim Brecht and Carey Williamson,
editors, Proceedings of the 27th ACM Symposium on Operating Systems Principles. ACM, 2019.

[116] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob Nelson, Omar S. Navarro Leija, Ashlie Martinez,
Jing Liu, Anna Kornfeld Simpson, Sujay Jayakar, Pedro Henrique Penna, Max Demoulin, Piali Choudhury, and Anirudh
Badam. The Demikernel Datapath OS Architecture for Microsecond-scale Datacenter Systems. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles. ACM, 2021.

Peihua Zhang, Chenggang Wu, Xiangyu Meng, Yinqian Zhang, Mingfan Peng, Shiyang Zhang, Bing Hu, Mengyao Xie,
Yuanming Lai, Yan Kang, and Zhe Wang. HIVE: A Hardware-assisted Isolated Execution Environment for eBPF on
AArché4. In Proceedings of the 33rd USENIX Security Symposium. USENIX, 2024.

Wei Zhang, Jinho Hwang, Shriram Rajagopalan, K.K. Ramakrishnan, and Timothy Wood. Flurries: Countless Fine-
Grained NFs for Flexible Per-Flow Customization. In Proceedings of the 12th International on Conference on Emerging
Networking EXperiments and Technologies. ACM, 2016.

Zongpu Zhang, Jiangtao Chen, Banghao Ying, Yahui Cao, Lingyu Liu, Jian Li, Xin Zeng, Junyuan Wang, Weigang Li,
and Haibing Guan. HD-IOV: SW-HW Co-designed I/O Virtualization with Scalability and Flexibility for Hyper-Density
Cloud. In Proceedings of the Nineteenth European Conference on Computer Systems. ACM, 2024.

Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C. Hoe, Vyas Sekar, and Justine Sherry. Achieving 100Gbps Intrusion
Prevention on a Single Server. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20).
USENIX, 2020.

[102

—

[103

—_

[104

flan)

[105

=

[106

—

[107

—

[108

=

[109

—

[110

-

[111

—

[112

—

[113

—_

[115

=

[117

—

[118

=

[119

—

[120

=

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 30. Publication date: December 2025.

https://doi.org/10.1145/3098822.3098826
https://doi.org/10.1145/3694715.3695947
https://doi.org/10.1145/3694715.3695947
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1145/3492321.3519589
https://doi.org/10.1145/3492321.3519589
https://www.usenix.org/conference/atc18/presentation/thalheim
https://www.usenix.org/conference/atc19/presentation/thimmaraju
https://www.usenix.org/conference/atc19/presentation/thimmaraju
https://doi.org/10.1145/3185467.3185469
https://doi.org/10.1145/3185467.3185469
https://www.sciencedirect.com/science/article/pii/S0140366416300615
https://doi.org/10.1145/3445814.3446714
https://doi.org/10.1145/3445814.3446714
https://doi.org/10.1109/CGO53902.2022.9741267
https://doi.org/10.1109/CGO53902.2022.9741267
https://doi.org/10.1007/978-3-031-37709-9_12
https://doi.org/10.1007/978-3-031-37709-9_12
https://doi.org/10.1109/DSN58291.2024.00017
https://doi.org/10.1145/3492321.3519553
https://doi.org/10.1145/3492321.3519553
https://doi.org/10.1145/3689031.3717490
https://doi.org/10.1145/3341301.3359647
https://doi.org/10.1145/3477132.3483569
https://www.usenix.org/conference/usenixsecurity24/presentation/zhang-peihua
https://www.usenix.org/conference/usenixsecurity24/presentation/zhang-peihua
https://doi.org/10.1145/2999572.2999602
https://doi.org/10.1145/2999572.2999602
https://doi.org/10.1145/3627703.3629557
https://doi.org/10.1145/3627703.3629557
https://www.usenix.org/conference/osdi20/presentation/zhao-zhipeng
https://www.usenix.org/conference/osdi20/presentation/zhao-zhipeng

30:24 Peter Okelmann, llya Meignan—Masson, Masanori Misono, and Pramod Bhatotia

Appendix
A eBPF CVE List

We provide a list of Common Vulnerabilities and Exposures (CVE) numbers for each of the vulnera-

bility categories discussed in this paper in Table 7.
Vulnerability/Component: CVEs
Verifier: register value tracking: CVE-2020-27171, CVE-2020-27194, CVE-2020-8835, CVE-2021-31440, CVE-2021-33200,
CVE-2021-3444, CVE-2021-3490, CVE-2021-45402, CVE-2022-23222, CVE-2022-2785, CVE-2024-41003, CVE-2024-43910
Helper: CVE-2021-34866, CVE-2021-4001, CVE-2021-4204, CVE-2024-26885, CVE-2024-36937, CVE-2024-42063, CVE-
2024-49861, CVE-2024-50164
Veriﬁer: branchpruning: CVE-2021-29155, CVE-2021-33624, CVE-2023-2163, CVE-2023-52920, CVE-2024-42072, CVE-
2024-43838
Verifier: context value tracking: CVE-2024-26611, CVE-2024-38566, CVE-2024-42151, CVE-2024-50063
Verifier: crash: CVE-2024-43837, CVE-2024-45020

Table 7. Related work discusses these 32 eBPF vulnerabilities [61, 62, 66, 117].

B eBPF Verification

eBPF verifiers statically verify that eBPF programs are safe by checking that they are self-contained
in their designated memory regions. We give an intuition on how eBPF memory safety is upheld
through careful runtime and verifier co-design. Afterward, we explain how the design of Prevail [39]
ensures effective verification.

eBPF memory safety. The verifier ensures memory safety: eBPF must only access its allocated
memory and not read uninitialized memory to prevent modifying or leaking internal information.
Therefore, eBPF is restricted to its stack and static allocations defined in the programs . data section.
Helper functions that safely store data in eBPF maps are the only way to use heap memory because
eBPF does not offer instructions or calls to allocate heap memory. Helper functions copy input
arguments into their own memory, while the verifier enforces their return values to remain read-only
by the eBPF program.

The only time the verifier allows dereferencing a point to external memory is to access the input
packet buffer. MorphOS’s eBPF functions use a fixed function signature that the verifier understands.
It contains a pointer to the start and end of the packet buffer. The verifier ensures that the eBPF code
sufficiently checks buffer bounds before accessing its memory.

Statically generating proof. Prevail [39] statically analyzes eBPF programs to verify their memory
safety by constructing control-flow graphs to be analyzed using the Crab [41] abstract interpreter.

Prevail knows what proof it needs to generate to verify memory safety because it not only
understands eBPF bytecode but is also aware of the surrounding ecosystem: Prevail knows the
semantic meaning of the context parameters passed as input to the eBPF function, as well as the
available helper functions and their memory access semantics.

The key to verification is to prove that all memory accesses a program may do are valid. Prevail
tags memory values with invariants and data types to differentiate between numerical values and
pointers. Whenever a pointer is modified using numerical values, a proof must be produced that the
numerical value is within a range that does not result in out-of-bounds memory accesses. Prevail
considers the bounds of three types of memory: First, Prevail tracks the state of individual bytes on
the eBPF program’s stack, which is limited to 512 bytes. Second, the eBPF context points to the start
and end of a packet buffer for which prevail only tracks accesses as generic values confined by the
packet bounds. Third, shared regions represent, e.g., eBPF maps that are confined by size and may
change their contents at any time because they can be shared with other programs.

Proc. ACM Netw., Vol. 3, No. CoNEXT4, Article 30. Publication date: December 2025.

MorphOS : An Extensible Networked Operating System 30:25

Using this memory abstraction, Prevail models the stack of all possible call graphs. It tracks
relationships between variables using Zone abstract domains [37]. By tracking all stack cells, Prevail
precisely resolves addresses for bounded memory regions like the stack while abstracting packet
accesses. Prevail avoids path explosion by merging states across loop iterations with widening or
joining operators, optimizing the Zone domain for efficiency.

Prevail’s approach to verification supports eBPF programs that contain loops, packet contexts,
shared maps, and scales to large programs by avoiding path explosion.

C Probabilistic eBPF isolation

The approach described in § 5.5 to isolating eBPF with MPK is limited by the assumption that there
are fewer than 15 packet buffers and eBPF programs so that the MPK isolation works with only 16
PKeys available in hardware.

To cope with this limited number of PKeys, we propose probabilistic isolation with MPK. MorphOS
only statically assigns PKey Kj to the unikernel but accepts permission overlaps by assigning
the remaining K;_15 pseudo-randomly to eBPF programs and packet buffers. With many in-flight
packets, a single key gets inevitably assigned to multiple packet buffer pages as well as K, ppF, causing
permission collisions. Consequently, probabilistic MorphOS hardening does not detect all illegal
memory accesses.

However, the blast radius of an eBPF program evading MPK isolation by chance, e.g., by randomly
guessing the address of a page that shares the K;_;5 key of its input packet buffer with probability r,
is limited to only these pages and only that invocation. Subsequent invocations likely use a different
key for the input buffer and hence require a new guess to find another buffer with the same key,
reducing the chances of a successful exploit that takes i invocations to (%)k,

Limitations of MPK hardening. While MorphOS hardens helper functions for eBPF maps by
allocating its data with K,ppr, other helpers may pass their inputs to kernel functions, making bugs
in unikernel implementations exploitable. In addition, our approach imposes memory overhead as
only one packet buffer can be allocated per page because that is the granularity of MPK permissions.
For example, we find that Click allocates statically sized buffers of 1.5k bytes regardless of packet
size, resulting in a memory overhead of 2.6X. An alternative design can be considered, where packet
buffers are copied between the protected and unprotected pages. For large packets, updating the
PKey and consequently flushing the TLB can be faster than copying [85].

Received June 2025; accepted September 2025

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 30. Publication date: December 2025.

	Abstract
	1 Introduction
	2 Background: OS Architectures for Network Stacks
	3 Motivation: Limitations of Unikernel-based Network Stacks
	3.1 Lack of Flexible Reconfigurability of Unikernels
	3.2 Complexity of Verifying Extensions
	3.3 Verification Correctness Challenges

	4 Overview
	4.1 MorphOS's System Architecture
	4.2 MorphOS Workflow
	4.3 Programming and Threat Model
	4.4 Key Ideas

	5 Design
	5.1 The OS Abstraction
	5.2 Network Stack
	5.3 ebpf Extensibility
	5.4 Decoupled eBPF Verification
	5.5 Hardware-Assisted Memory Safety

	6 MorphOS for vnfs
	7 Implementation
	8 Evaluation
	8.1 Lightweight Reconfigurability
	8.2 Correctness and Safety
	8.3 Performance

	9 Related work
	10 Conclusion
	Acknowledgments
	References
	A ebpfcve List
	B ebpf Verification
	C Probabilistic ebpf isolation

