
VMSH: Hypervisor-agnostic Guest Overlays for VMs
Jörg Thalheim

Technical University of Munich
The University of Edinburgh

Peter Okelmann
Technical University of Munich

Harshavardhan Unnibhavi
Technical University of Munich

Redha Gouicem
Technical University of Munich

Pramod Bhatotia
Technical University of Munich

Abstract
Lightweight virtualmachines (VMs) are prominently adopted
for improved performance and dependability in cloud envi-
ronments. To reduce boot up times and resource utilisation,
they are usually “pre-baked" with only the minimal kernel
and userland strictly required to run an application. This in-
troduces a fundamental trade-off between the advantages of
lightweight VMs and available services within a VM, usually
leaning towards the former.We propose VMSH, a hypervisor-
agnostic abstraction that enables on-demand attachment of
services to a running VM—allowing developers to provide
minimal, lightweight images without compromising their
functionality. The additional applications are made available
to the guest via a file system image. To ensure that the newly
added services do not affect the original applications in the
VM, VMSH uses lightweight isolation mechanisms based
on containers. We evaluate VMSH on multiple KVM-based
hypervisors and Linux LTS kernels and show that: (i) VMSH
adds no overhead for the applications running in the VM,
(ii) de-bloating images from the Docker registry can save up
to 60% of their size on average, and (iii) VMSH enables cloud
providers to offer services to customers, such as recovery
shells, without interfering with their VM’s execution.

CCS Concepts: • Software and its engineering→Virtual
machines.

ACM Reference Format:
Jörg Thalheim, Peter Okelmann, Harshavardhan Unnibhavi, Redha
Gouicem, and Pramod Bhatotia. 2022. VMSH: Hypervisor-agnostic
Guest Overlays for VMs. In Seventeenth European Conference on
Computer Systems (EuroSys ’22), April 5–8, 2022, RENNES, France.
ACM,NewYork, NY, USA, 19 pages. https://doi.org/10.1145/3492321.
3519589

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’22, April 5–8, 2022, RENNES, France
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9162-7/22/04. . . $15.00
https://doi.org/10.1145/3492321.3519589

1 Introduction
Virtualisation is the cornerstone of cloud computing. Cloud
providers predominately use virtual machines (VMs) to con-
solidate and isolate multiple tenants on a single physical
host [2, 127]. To enable virtualisation, the Linux kernel-based
virtual machine (KVM) [72] is the de facto mechanism in
the cloud since it uses hardware acceleration to enforce com-
partmentalisation [44, 50, 87, 106].

With an increased demand to support performance-critical
workloads, there is a significant thrust towards designing
lightweight VM solutions to minimise the virtualisation over-
heads [2, 22, 80, 94]. These solutions provide reduced mem-
ory footprints and fast boot up times [83], which makes
them suitable for increasingly popular deployment models,
such as serverless [13, 116, 119]. Furthermore, lightweight
VMs improve dependability properties since they strive to
minimise the trusted and reliable computing base [80].

The key to build lightweight VMs is to minimise their root
image size. This entails removing additional services, such
as monitoring and inspection tools, which are not used in
normal application deployments. Therefore, the VM images
strive for reduced software dependencies; thus, enabling
agile development.

While lightweight VMs provide a promising approach for
modern cloud workloads, they are limiting in other crucial
scenarios at the same time. In particular, the deployed file sys-
tem images are typically pre-built and must be re-deployed
for every change—even during testing. This limitation is es-
pecially amplified when the users need additional tools or
services on-demand that are initially not a part of the lighter
VMs. Re-building images can be particularly bothersome
when development tools are missing for debugging, monitor-
ing or repairing VMs. The following re-deployment requires
complex interplay between many cloud components and
configurations. And finally, it always means that the virtu-
alised system is restarted and all measurable or debuggable
state is lost.
This fundamental trade-off between the advantages of

lightweight VMs and available services within a VM man-
ifests in the form of restricted functionalities provided by
VMs. On the one hand, the users want pre-baked lightweight
VMs for performance. However, adding more software in
a non-disruptive way is difficult because of the variety of
lightweight VM stacks. To work around these limitations,

1

https://doi.org/10.1145/3492321.3519589
https://doi.org/10.1145/3492321.3519589
https://doi.org/10.1145/3492321.3519589

EuroSys ’22, April 5–8, 2022, RENNES, France Thalheim et al.

the cloud providers offer a plethora of purpose-built and
highly specialised management agents [8, 40, 41, 82] and
tracing libraries [5] which again counteract advantages of
lightweight VMs such as their dependability properties (§ 7).
To this end, we ask the following research question: Can

lightweight VMs be extended with external functionality on-
demand and non-disruptively?
To address this problem, we propose VMSH, which pro-

vides an abstraction for accessing KVM-based VMs for tasks
such as inspection, debugging, or modification. VMSH en-
ables users to add functionality to VMs non-disruptively and
connect to newly attached programs via a console. Software
packages added to lightweight VMs with VMSH do not re-
quire modifications. Moreover, the original guest userspace
is protected from accidental harm. To maintain generality,
VMSH provides an abstraction over the hardware and APIs
of different KVM-based hypervisors, to offer a uniform hard-
ware interface.

VMSH achieves this by side-loading kernel code from the
hypervisor into the guest. This code registers hypervisor-
independent block and console devices. It then spawns a
container-based system overlay that mounts the file sys-
tem from the block device, which contains the service to
be started in the container. The user can interact with the
injected service over the console device and work with the
original guest outside of the guest overlay. To protect the
guest from accidental harm, VMSH is container aware and
mounts namespaces selectively.

Our implementation currently targets KVM-based hyper-
visors with Linux kernels both in the host and the guest. To
side-load external code in the VM, VMSH operates directly
on the hypervisor’s KVM and conducts a binary analysis on
the VM’s memory to load a kernel library into the guest. For
VMSH to serve a file system image to start programs from,
we implement a block device following the VirtIO standard.

We evaluate VMSH across four dimensions: robustness,
generality, performance, and effectiveness. Lastly, we evalu-
ate three use-cases. For robustness, we run the xfstests [60]
suite and show that VMSH’s block device does not have any
regressions compared to the QEMU implementation (§ 6.1).
We demonstrate VMSH approaches its goal of generality by
successfully testing 4 industry leading KVM-based hypervi-
sors and all current long-term support versions of the Linux
kernel (§ 6.2). We measure performance with the Phoronix
Test Suite [65] and fio [54], and find no slowdown of the
guest while VMSH is attached (§ 6.3). For effectiveness, we
strip popular Docker images on Docker Hub [28] from un-
used files such as user tools which might become obsolete
through VMSH (§ 6.4). With an average size reduction of 60%,
VMSH promises to ease adoption of lightweight VMs by al-
lowing their on-demand attachment. Finally, we implement
three real-world use-cases that make VMSH a key element
in cloud infrastructures (§ 6.5).
Our contributions can be summarised as follows:

• We propose an abstraction which allows to extend
lightweight VMs at run time independently of the
guest and hypervisor (§ 2.2). This enables lighter VMs
by removing tools from VM images while still being
able to attach them back to the VM on-demand (§ 2.3).

• We design a system for hypervisor-independent side-
loading into a VM of a generic guest-overlay that does
not impose limitations on both the original guest ap-
plication or the spawned service, and a device that can
be attached to hypervisors non-cooperatively (§ 4).

• We implement (§ 5) and evaluate (§ 6) VMSH. We
show that it is compatible acrossmany hypervisors and
Linux versions, that it does not slow down the original
VM guest, and that its use-cases have the potential to
reduce image sizes of lightweight VMs.

2 Background and Motivation
We first provide a brief background on KVM and virtIO to
understand the design details of VMSH.

Kernel-based virtualmachine (KVM). Hardware-assisted
virtualisation uses capabilities on host processors to enable
efficient full virtualisation. Full virtualisation emulates the
complete hardware environment to allow running an unmod-
ified guest OS that uses the same instruction set as the host
machine. Kernel-based virtual machine (KVM) is a kernel API
for Linux (also FreeBSD and Illumos) that provides an abstrac-
tion layer on top of hardware-assisted virtualisation capabil-
ities of different CPU architectures. KVM is the default virtu-
alisation API used by major cloud providers [44, 50, 87, 106].

The actual program that runs the guest OS, called the hy-
pervisor, is implemented in the userspace and uses KVM.
KVM hypervisors include QEMU [93], Firecracker [2], Cloud
Hypervisor [22] and crosvm [42]. The hypervisor sets up
the initial CPU and memory and emulates the devices, e.g.,
block, console, NICs. VMSH attaches to VMs mainly target-
ing KVM.

VirtIO. Emulating physical hardware is slow and causes
significant overheads compared to the native execution on
real hardware. Thus, most paravirtualised hypervisors rely
on devices based on the VirtIO standard to improve the per-
formance and simplify the interface between the hypervisor
and the guest. VirtIO defines a common interface for VM-
optimised device emulation (network devices, block devices,
etc.) [99, 118]. Most hypervisors implement VirtIO devices
and their guest drivers exist for all major OSes. Depending on
the device type, VirtIO specifies a number of consumer/pro-
ducer virtqueues in shared memory, which the device in
the hypervisor and the driver in the guest use to exchange
data. VirtIO has two major transport mechanisms, based on
either memory mapped IO (MMIO) or on the PCI standard.
In VMSH, we implement the MMIO variant, which is more
widespread, especially in microVMs [2, 32, 57, 95].

2

VMSH: Hypervisor-agnostic Guest Overlays for VMs EuroSys ’22, April 5–8, 2022, RENNES, France

2.1 Cloud VM agents and their limitations
Many of the use cases of VMSH can already be fulfilled by
agents running in cloud VMs. However, such agents have
several disadvantages:
In an enterprise setup, these network-facing VM agents

and management services are usually only accessible to ad-
ditional management networks that are not connected to
the Internet and/or require additional key management for
authentication. Moreover, VM agents are either provider- or
hypervisor-specific and must be adapted for each guest OS.
In particular, in the Linux ecosystem, there are a variety of
distributions and versions, making it difficult to test all the
different combinations. VMSH shifts complexity away from
both the user and the provider, making it easier to create
portable services. Since VMSH relies only on the kernel, it
can even work in failure mode when most of the guest user
space is not working.

2.2 Motivation: The Missing Abstraction in VMs
Attaching programs or services at run time to today’s VMs
is a complex task since accessibility is provided by services
like SSH, requiring key management and configuration.
On serverless platforms, that often means redeploying

the whole application, which is disruptive and might mask
the error’s origin due to the loss of the VM state. Moreover,
the lack of a consistent hypervisor management API is a
hindrance for adding virtual devices at run time.
We therefore need an abstraction that reduces this com-

plexity down to a universal and simple interface that is used
to execute arbitrary applications on-demand inside VMs.
Container runtimes offer a similar user experience with
container-exec tools like docker exec. VMSH aims to satisfy
this requirement for VMs too, and aims to work with many
state-of-the-art hypervisors and Linux kernel versions.
Using our new abstractions, we show multiple use cases

that target different application scenarios, that we hope can
empower cloud providers and application developers alike. In
the long run, we also hope that we can motivate new virtuali-
sation standards which improve performance and long-term
stability compared to VMSH. We envision a vm-exec device
that allows one to start binaries, while not depending on
vendor-specific guest agents. In this way, VMSH provides
out-of-band management similar to IPMI [52]/Redfish [27]
on physical hardware.

2.3 Example Use-cases Enabled by VMSH
Given the vm-exec device abstraction, we can enable a range
of new services that help administrators and developers to
operate or run VM workloads (also see § 6.5).

Dependability services. Cloud customers tend to have a
wide range of distributions and versions installed [9]. There-
fore, integrating provider tools into guests can be challeng-
ing. VMSH makes it possible to decouple these services from

the guest userland. For example, cloud providers could use
VMSH to attach the following services to their customers’
VMs:

• Rescue systems in case of misconfiguration, including
network misconfiguration or forgotten passwords. Ex-
isting implementations of such services require reboot-
ing into a recovery system [26, 47].

• Monitoring tools are currently used to gather coarse-
grained information about the resource usage of the
entire guest [74]. VMSH provides a more fine-grained
view as it gives access to the guest OS metadata, such
as the process list, resource usage, etc.

• Security scanner tools that track out-of-date or inse-
cure packages. This is already done in the container
space [6, 39, 51]. VMSH enables similar techniques to
track and update packages in the VM space.

De-bloat VM images. VMSH allows cloud providers and
developers to build lightweight VMs [14, 97, 120, 123] by
omitting debugging and administration tools from main ap-
plications deployed in a VM. Such an approach reduces the
size of deployed images, providing multiple advantages. First,
the cost of storage is reduced. Second, smaller image sizes
lead to faster scale-up times as the amount of data transferred
over the network is low. Finally, the build time required to
generate the images is also reduced. Moreover, current in-
stallations only contain tools that are required to log into the
VM. With VMSH, on-demand debugging environments can
be packed with more tools, benefiting the cloud customers
administrators and developers. These environments would
only need to be deployed by the cloud provider in excep-
tional cases and could be reused for different application
VMs on a host. This improves the security of running the
VM, as services such as SSH are no longer required.

Serverless frameworks. Serverless offerings usually run in
lightweight VMs to improve isolation between instances. De-
velopers usually do not have access to the environment run-
ning the instances. Additionally, these images often contain
only a minimal management layer from the service provider,
and the main application that the developer wants to deploy.
For error and performance debugging, the user has access to
minimal resource metrics exposed by the provider [7] and
logging information from the application itself [4]. By mak-
ing VMSH available to users, cloud providers could grant
their customers access to these serverless instances, e.g., by
integrating VMSH into a Web-IDE to perform interactive
debugging. This would allow for more time-efficient debug
cycles compared to having to re-deploy the application on
every modification.

3

EuroSys ’22, April 5–8, 2022, RENNES, France Thalheim et al.

Host

VM

Guest kernel

Guest
process

...

Overlay

Shell

VMSH

attaches

FS image

Console

accesses

Figure 1. A user attaches a custom file system image to a
VM and starts a shell from the image using VMSH. (Orange
refers to VMSH components running on the host and blue to
the ones in the guest.)

3 Overview
3.1 System Overview
To realise the vm-exec abstraction for VMs (Section 2.2), we
design VMSH, a system that allows users to extend VMs at
run time. A dedicated file system image provides the addi-
tional tools and services that execute transparently, without
any help from a guest agent, the hypervisor or the guest OS.
As shown in Figure 1, VMSH runs natively on the host,

in parallel to the hypervisor process. VMSH attaches to the
hypervisor, and spawns a container-based overlay running
on top of the guest kernel. From the supplied file system
image, this overlay can start applications, connecting them
to VMSH’s console. These applications, e.g., a shell, run in
guest userspace. To this end, VMSH strives for the following
design goals:

• Non-cooperativeness: VMSH must not rely on agents
in guest userspace.

• Generality: VMSH shall be agnostic to the underlying
hypervisors and should not depend on hypervisor-
specific APIs. Also, it shall support a wide range of
different guest kernel versions.

• Performance: We aim to have no degradation in per-
formance of applications running in a guest where
VMSH is attached. Performance of the attached tools
and services is secondary, but they need to be usable.

Figure 2 shows how VMSH attaches to a VM and spawns
tools and services to interact with the applications and kernel
inside the VM. In step 1⃝, VMSH attaches its console and
block device to the hypervisor to serve the user supplied file
system image. In step 2⃝, a library is side-loaded into the
guest kernel. The library starts the guest drivers to make
VMSH’s console and the file system image available to the
guest kernel. In step 3⃝, the library spawns a process that
creates the guest overlay container. The file system image
is mounted as the overlay’s root file system and existing
guest mountpoints are made available under the directory
/var/lib/vmsh. In step 4⃝, the spawned process starts tools or

services, from the mounted file system image and redirects
its input/output to the VMSH’s console device.

3.2 Threat Model
In a typical cloud deployment scenariowe consider for VMSH,
VMs are used to multiplex hardware resources on a sin-
gle physical machine among multiple untrusted tenants.
Through hardware-assisted virtualisation, the VMs are iso-
lated from each other; thereby protecting their confidential-
ity, integrity and availability. Hence, we assume that the
hardware, the host OS and the hypervisor is included in
VMSH’s trusted computation base (TCB). While attacks on
this TCB have been successful [92], they are out of scope for
VMSH.

Attackers may compromise a VM in multiple ways. To es-
cape a VM, they can attempt to exploit vulnerabilities in the
hypervisor [98], as they contain complex device implemen-
tations that contribute to a relatively large attack surface.
In Section 4.5, we describe the design choices we take as
countermeasures to reduce the risk of such an attack. Pre-
vious work on hardening the security of KVM [11] and of
the hypervisor [67] is orthogonal to our contributions with
VMSH.

Exploiting VMSH to gain access to a VM is another attack
vector and requires another successful exploit. VMSH drops
all privileges beyond the ones of the hypervisor after the
setup phase for security hardening (see § 4.5).
A critical point in the security and integrity of customer

assets, i.e., the VM, are cloud providers, as they control the
hardware. They are responsible for executing VMSH on be-
half of the customer. VMSH therefore enables providers to
leverage their power over the physical hardware. Providers
thus face great responsibility, as their position opens several
attack vectors: rogue administrators with direct hardware
access, misconfiguration of hardware provisioning or weak
access policies can lead to unauthorised access to machines,
thus infringing VM security. Providers have a strong incen-
tive to mitigate those risks because they are legally liable
for such data compromises. Therefore, we do not assume
malicious providers or administrators for the security con-
siderations of VMSH, even though we acknowledge them as
risks.
Related research, motivated by active IT security inspec-

tion of VMs, focuses on the stealthiness and integrity of
injected code execution [18, 124]. In our scenario, the VMSH
user and the VM owner are the same entity and trust the
guest. This assumptionmakes intrusion detectionwith VMSH
unreliable, but enables other hardware intensive workloads
as shown in our evaluation (see § 6).

3.3 Design Challenges
Next, we present the three challenges that we address when
designing the vm-exec abstraction.

4

VMSH: Hypervisor-agnostic Guest Overlays for VMs EuroSys ’22, April 5–8, 2022, RENNES, France

VM

Guest kernel

VMSH

Console device

Guest overlay

Block device

side-loaded
library

root: /

...

/var/lib/vmsh

Shell

spawned
process

Block
driver

Console
driver

VM root
1 2

3

4

Figure 2. VMSH sets up its devices in the guest by side-
loading a kernel library. The virtual block device backs the
overlay’s root. The virtual console handles console input-
s/outputs of the spawned process.

#1 Side-loading code into guest VMs.As described in § 3.1,
VMSH works by side-loading a library into the guest kernel,
which then mounts the file system image with the required
applications. Side-loading code into the guest VM would
traditionally require a cooperative guest agent running inside
the VM or hypervisor-specific APIs.
The increasing variety of new, lightweight hypervisors

lack common APIs. QEMU provides a debugger interface
that can be used for code side-loading, while also allowing
one to attach disks at run time. Crosvm [42] only has the
former whereas Firecracker [2] and kvmtool [126] lack both.
In other cases, such features, even when supported by hy-
pervisors, are obscured by orchestration frameworks, such
as OpenStack [34] or Containerd [23].

APIs for interacting with hypervisors are therefore sparse,
heterogeneous and incomplete. Consequently, side-loading
code into the guest is challenging for VMSH since it aims
to be hypervisor-agnostic and not require guest agents. To
overcome this, we design VMSH to access the underlying
KVM API (see § 2) without any help from the hypervisor
(see § 4.1).

#2 Building a side-loadable library. VMSH aims to ensure
that the side-loaded kernel library integrates with a wide
range of kernel versions and without a guest agent. There-
fore, VMSH has to find kernel function addresses which the
library needs and calls at run time. Finding those functions
through binary analysis is difficult, especially with the Linux
kernel as the internal kernel API and data structures are
not considered stable. Hence, it is not trivial to build a side-
loadable library that would work for all kernel versions. We

need to strike a balance between the number of kernel fea-
tures needed by VMSH and the functions it interacts with
that could possibly change across kernel versions.
To address this issue, we build a minimal kernel library

by offloading as much functionality as possible to existing
kernel drivers (see § 4.2).

#3 Communication over VirtIO devices. From an end-
user perspective, one should be able to run any application,
by attaching to the VM, and access application’s input and
output. However, there is currently no easy and transpar-
ent way in which we can make additional application files
available to the guest at run time and redirect their IO to the
host.
Therefore, we build a block and a console device that en-

able us to overcome these issues. Hypervisors such as QEMU
and Firecracker emulate devices within the hypervisor itself.
Since we aim to be hypervisor-agnostic, the devices have to
run outside the hypervisor process, without its cooperation.
This requires us to overcome two challenges:

1. VMSH needs to handle MMIO-triggered VMEXITs in
the hypervisor which are caused by the guest accessing
MMIO addresses of the devices.

2. Data to be exchanged between the guest driver and the
VMSH device needs to be written to queues located in
virtual guest memory and shared with VMSH.

To (1.) intercept MMIO accesses, VMSH uses one of two
methods: a slower debugger-based approach and a novel
KVM feature called ioregionfd [107]. The (2.) queues them-
selves are read from the hypervisor memory via system calls.
We describe the design of our hypervisor-independent VirtIO
devices in § 4.3.

4 Design
To address the design challenges, we next describe how we
load kernel code into the guest VM (§ 4.1) and techniques to
analyse the guest memory to enable VMSH to load the ker-
nel library (§ 4.2). We describe mechanisms to serve VirtIO
devices (§ 4.3). Then, we explain the layout of our container-
based system overlay (§ 4.4), and finally discuss the security
implications (§ 4.5).

4.1 Hypervisor-agnostic Side-loading for VMs
As described in § 3, it is the responsibility of the side-loaded
kernel library to mount devices and spawn the userspace
process that creates the guest overlay container. However,
this has to occur without any help from a guest agent or the
hypervisor. To address challenge #1, we present the design
of VMSH’s framework that enables side-loading of code into
a guest VM, independent of the hypervisor userspace imple-
mentation used. In our design, we focus only on KVM-based
hypervisors. Although the concept could be ported to other
Type2 hypervisor APIs, e.g., XEN, which has a userspace

5

EuroSys ’22, April 5–8, 2022, RENNES, France Thalheim et al.

Hypervisor
virtual

memory

Userspace

Kernel KASLR
range VMSH

Kernel
modules

Guest
physical
memory

Guest
virtual

memory

Device
space

Figure 3. Address space mappings between hypervisor vir-
tual memory and guest physical/virtual memory.

hypervisor that uses the kernel API, we have not explored
this area.

To side-load arbitrary applications into the guest, VMSH
first side-loads a kernel library into the guest to mount de-
vices and spawn userspace guest processes. This can be done
by loading the library into guest physical memory. The hy-
pervisor has the guest physical memory mapped into its
own address space (see Figure 3). VMSH can use this fact
to find the location of the guest physical memory and side-
load code. However, we cannot rely on hypervisor-specific
APIs to perform this operation in a hypervisor-agnostic way.
VMSH circumvents this limitation by injecting system calls
into the hypervisor process. This is required as the OS only
allows to manipulate the guest from the hypervisor process.
To be able to run system calls in the hypervisor process,

we rely on debugging APIs provided by process tracers such
as ptrace. This allows VMSH to control and inspect the state
of the hypervisor process, and consequently the guest VM.
It does so by interacting directly with the low-level kernel
API, KVM in our case. Using this, VMSH first interrupts the
hypervisor process. Next, VMSH prepares the system call
arguments by updating the CPU registers according to the
CPU-specific system call ABI. When system calls require
pointers to memory, VMSH allocates and maps the allocated
memory into the hypervisor address space, and performs
reads and writes to that memory region via inter-process
memory access system calls. We describe this in § 5, specifi-
cally for the KVM API.
Using the low-level hypervisor API, i.e., KVM, VMSH

queries the vCPUs of VM. It then dumps the register state of
a vCPU to reveal the location of the page table, i.e., CR3 regis-
ter on x86 and TTBR0 on arm64, which provides information
about virtual memory mappings of the guest VM.

Using this information, VMSH side-loads the kernel library
into the guest VM. It then uses the low-level hypervisor API
to update the guest instruction pointer register to run from
the library’s code. Although VMSH is intentionally designed

so that its own execution is visible to the guest, e.g., by using
kernel logging, its execution cannot be reliably interrupted
by the guest. Therefore, it is important that providers obtain
their clients’ consent before attaching VMSH to a virtual
machine. For clients who do not trust their providers, code
injection could only be safely prevented by using memory
encryption and attestation such as AMD SEV [1].

Modern operating systems use hardening techniques such
as Kernel Address Space Layout Randomisation (KASLR),
which maps the kernel to random locations in virtual mem-
ory at each boot. In the next section, we describe the binary
analysis techniques used by VMSH to recover random loca-
tion of the kernel and its functions in memory.

4.2 Kernel-agnostic Library
As previously stated, VMSH side-loads a kernel library into
the guest that enables mounting devices and spawning a
guest userspace process. This library is not a Linux kernel
module as we do not use Linux’s load mechanism (also see
§ 5). Because of KASLR, mapping the kernel library into
the correct location is challenging. Hence, to address chal-
lenge #2, we present the design of VMSH’s binary analysis
framework that provides VMSH with information about the
location of the kernel and relevant kernel function addresses
that are used within the side-loaded kernel library.

Although KASLR randomizes the kernel location, the ker-
nel itself is placed into a fixed number of slots in memory,
located in a fixed address range [53]. VMSH can therefore
locate the kernel by iterating over the guest VM’s page table
entries.

VMSH also searches for the location of the function name
section in the guest OS, e.g., located at .ksymtab_strings in
Linux (other OSes provide similar mechanisms [35]). The ac-
tual function addresses are stored in a different data structure
(.ksymtab), whose size is unknown. Since this data structure
contains references to the function name section, VMSH
checks for valid references to estimate its size. VMSH then
uses the data structure to figure out the addresses of all ex-
ported kernel functions in memory. These addresses are used
by VMSH to fix up kernel function references in the library
being side-loaded into the guest via VMSH’s custom binary
loader.

With the kernel function references resolved, VMSH uses
the discovered kernel address range to side-load the kernel
library into the guest, by writing it into hypervisor memory.
To load it in such a manner that there are no collisions with
existing guest physical allocations set up by the hypervisor,
VMSH allocates new guest physical memory at the upper
end of the guest address space. We observe that all the tested
hypervisors tend to use physical addresses from low to high.
With the kernel library side-loaded into guest physical

memory, it needs to be mapped into guest virtual memory,
so that it can be run from within the guest VM. The library
is mapped into the guest virtual memory by updating the

6

VMSH: Hypervisor-agnostic Guest Overlays for VMs EuroSys ’22, April 5–8, 2022, RENNES, France

guest’s page tables. Once again, we take advantage of the
fact that the KASLR range is known, as described previ-
ously. Moreover, once the kernel is loaded at boot time into
a random location in memory, no more changes are made
afterwards. Hence, it is safe to map the side-loaded library in
virtual memory right after the kernel, as shown in Figure 3.

Once the library is loaded into the guest VM and can
be executed, VMSH modifies the instruction pointer of the
guest VM’s vCPU, via the low-level hypervisor API, to run
the library’s code. To synchronise events between VMSH
running on the host and the side-loaded library running in
the guest, we use a shared memory region that the guest
polls for updates from VMSH and vice versa.

4.3 Hypervisor-independent VirtIO Devices
The side-loaded kernel library is used to register VMSH’s
VirtIO devices. These devices need to be run in a hypervisor-
agnostic manner, and must therefore run in a process exter-
nal to the hypervisor. Hence, to address challenge #3, we
design VirtIO block and console devices that run inside the
VMSH process. VMSH uses the block device to serve the
file system image containing applications and the console
device to redirect the application’s input and output outside
the guest VM.
VMSH uses the VirtIO protocol to serve both types of

devices. In the following, we explain the general flow for
the block device driver. The guest driver enqueues block
IO requests into its virtqueue for the VMSH block device
to consume (Fig. 4/1.). VMSH’s block device processes the
request and enqueues the response into the other virtqueue
(Fig. 4/2.). To indicate new requests in the queue, the guest
driver also notifies the block device by writing to an MMIO
register (Fig. 4/3.). As the corresponding MMIO addresses
are not backed by physical memory, writing to them causes
a VMEXIT. Since VMSH’s devices run in a process external
to the hypervisor, we need to trap such accesses and handle
them in VMSH’s respective device. In § 5, we describe the
two ways in which we can trap and handle MMIO accesses
to VMSH’s devices from the guest. To notify the guest dri-
ver about new items in VMSH’s virtqueue, we trigger an
interrupt through KVM using an irqfd (Fig. 4/4.).

4.4 Container-based System Overlay
After setting up the devices, the kernel library spawns a
userspace process in the guest (see Figure 2). However, the
spawned process and additional devices may require an en-
vironment that would conflict with the guest VM’s root file
system, e.g., configuration files in /etc. Such conflicts can be
avoided by using containerisation techniques.
These conflicts arise when applications rely on absolute

paths to files existing on both file systems. To resolve possible
conflicts, VMSH employs mount namespaces. The file system
on the block device provided by VMSH is mounted as the
root file system in a newly created mount namespace. All

old mount points of the guest are moved under the directory
(/var/lib/vmsh). Using a mount namespace ensures that these
mount points are not propagated to existing guest processes
except the ones started by VMSH.
Additionally, VMSH can attach to containers running in-

side VMs, which is becoming the standardmethod to run con-
tainer workloads due to improved security benefits. VMSH
is not tied to a specific container engine, e.g., Docker, lxc,
containerd. Instead, it uses the process ID of a containerised
process running inside the VM to get information about the
process (UID, GID, Apparmor/Selinux profiles, namespaces,
cgroups, capabilities) and applies the context to the newly
established interactive shell.

4.5 Security
In this section, we discuss the design decisions to minimise
VMSH’s impact on security, as it increases the hypervisor’s
attack surface by adding more functionality to it. As ex-
plained in § 3.2, VMSH requires customers to place trust in
their cloud providers and include them into their TCB. The
main threat is from a colocation attack where an adversary
controls the VM, and could exploit VMSH to escape from
the VM and get access to the host or in turn to other VMs.
Firstly, attached services are confined within the VM as

they are executed in it by the side-loaded library. The side-
loaded library in the guest kernel and the application thus
run in the same privilege domain as the guest. Hence, VMSH
does not impact the attacker’s capability because they could
run similar code without it. To safely prevent side-loading
from any party, VM memory encryption and attestation
could be used as discussed in Section 4.1.
Secondly, the largest part of the attack surface is con-

tributed by VMSH’s devices which are emulated on the host.
Those devices are the only channels added by VMSH lead-
ing from attached services onto the host: they lead into a
file backing the block device, and into a terminal for the
console device, respectively. VMSH is written in Rust to fur-
ther improve memory safety by the use of safe abstractions.
To reduce the risk of security bugs in VMSH’s devices, we
rely on production-tested libraries that are also used by Fire-
cracker, crosvm and Cloud Hypervisor. The alternative to
adding VMSH’s devices is to rely on networking as a commu-
nication channel, which involves large, error-prone software
stacks that need configuration.

Thirdly, to find the physical memory inside the hypervisor
address space, we use an eBPF program. Therefore, VMSH
currently needs privileges beyond those of an unprivileged
user. In our prototype, those capabilities are dropped be-
fore interacting with the guest/hypervisor to not increase
the privileges exposed to a potential attacker. In the future,
we plan to move this part into a dedicated setuid binary to
improve security.

In comparison to guest agents installed by some VM provi-
ders, VMSH shifts the responsibility of secure authentication

7

EuroSys ’22, April 5–8, 2022, RENNES, France Thalheim et al.

Guest Memory

consume
VMSH block

device

serve reads/writes

notify guest driver
irqfd interrupt4. KVM

3. Virtio MMIO region

Guest driver

notify VMSH
write to register

write1. Driver virtqueueconsume

write 2. VMSH virtqueue

Figure 4. VMSH communication infrastructure based on the VirtIO protocol. Guest and host components share data through
virtqueues (1, 2). Notification is performed through MMIO regions (3) and KVM (4).

and authorisation from the customer to the provider. Such
provider-supplied management APIs increase the attack sur-
face. But we believe that, comparatively, VMSH does not
increase the TCB, because those APIs do not require net-
work access from the guest network, mitigating remote code
execution bugs [81].
Overall, we think that VMSH does not significantly in-

crease the risk of colocation attacks. In our considerations,
we omit the possibility of VMSH being misused by providers
as they are legally liable if they compromise customer VMs.

5 Implementation
VMSH is written in Rust (13k LoC), except for a small tram-
poline code written in assembly, used in our kernel library
entrypoint. VMSH consists of three programs: the host ex-
ecutable with VirtIO devices, a guest kernel library and a
guest userspace program. The host executable contains both
the sideloader that uploads the code into the guest kernel
as well as the VirtIO device implementation. For ease of de-
ployment, we build VMSH as a single binary, with the guest
kernel library and guest userspace program embedded in its
data section.
Sideloader. The sideloader is responsible for uploading our
guest kernel code into the guest. In our implementation, we
target the KVM API instead of relying on a particular KVM
userland hypervisor. To figure out the number of vCPUs, we
use Linux’s /proc file system to iterate over the hypervisor’s
file descriptors and identify those that belong to KVM by
resolving symbolic links in /proc. The sideloader then uses
the ptrace system call to interrupt the hypervisor process
with PTRACE_INTERRUPT to perform the system call injection
described in § 4.1. VMSH uses the process_vm_readv() and
process_vm_writev() system calls to read from and write
to the hypervisor memory, respectively. Some system calls,
e.g., the KVM irqfd system call, return a file descriptor that
the sideloader sends back to its respective host process using
an injected UNIX socket.

Prior to uploading, the sideloader needs to locate the guest
memory in the hypervisor memory. Since there exists no

KVMAPI to figure out the physical memory layout of the VM
and its corresponding mappings in the hypervisor virtual
address space, we extract this information from the host
kernel data structures using a small eBPF program we attach
to the KVM function kvm_vm_ioctl(). This function is called
by the host kernel when a KVM system call is injected. Our
eBPF program parses the data structure containing all guest
allocations and their offsets in the hypervisor memory from
the function’s arguments.

VirtIO devices. VirtIO devices run as background threads
in VMSH. We implement the devices by using existing Rust
libraries from the rust-vmm [121] project. These libraries are
also used in Firecracker, crosvm and Cloud Hypervisor. We
extend their backend to read from and write to another pro-
cess’ memory as described in § 4.3. We optimise the perfor-
mance bymapping the block device as a file into memory and
use the process_vm_readv()/process_vm_writev() system
calls to copy data between the hypervisor process and the
block device file, directly in the host kernel. This doubles the
performance in Phoronix benchmarks as shown in § 6.3.
As outlined in § 4.3, VMSH traps accesses to MMIO ad-

dresses for device initialisation and driver updates (also see
Figure 4/3.). In VMSH, we either rely on a ptrace-based
solution or KVM’s ioregionfd as described next.

Ptrace. To start executing a vCPU, the hypervisor uses the
ioctl(KVM_RUN) system call and blocks, waiting to bewoken
up by returning from the system call. Inside the guest, when
an MMIO access occurs, a VMEXIT is triggered, unblocking
the hypervisor process. We use ptrace to hook into this
system call’s entry and exit, effectively allowing us to create
a wrapper around it. The hypervisor thread running the
respective vCPU will be interrupted each time, until we
resume it. During this period, we use the memory mapped
vCPU file descriptor of KVM to parse the MMIO request and
handle it.

Ioregionfd. Using ptrace adds an overhead to all VMEXITs,
as we add context switches to the VMSH process. This can
hurt the performance of the guest application. Therefore,

8

VMSH: Hypervisor-agnostic Guest Overlays for VMs EuroSys ’22, April 5–8, 2022, RENNES, France

we offer support for KVM ioregionfd, a feature currently
under review for inclusion into the Linux kernel [107], as an
alternative to wrap_syscall. This feature allows an MMIO
region to be associated with a file descriptor, that can in turn
be used to notify the VMSH process. It uses sockets to send
MMIO accesses to the device that handles them.

Guest kernel library.We build this component as a shared
ELF library. The entry point to the library uses a trampoline
that saves and restores registers. This allows VMSH to en-
sure the guest jumps to the library rather than having to call
it. Most common OSes do not provide a stable ABI. Hence,
the kernel interface that our library uses should be minimal
to avoid possible breaking changes between different kernel
versions and maximise code reuse. In our prototype, we tar-
get the Linux kernel and also test portability across different
kernel versions in § 6.2. In total, we use twelve kernel func-
tions (two for driver registration, four related to file IO, five
related to process/threads).

Guest userspace program. To keep the kernel library small,
we offload as much functionality as possible to the guest
userspace. The guest program is a statically linked executable
that is copied into the guest VM by the kernel library into
a writable path, i.e., /dev. Once started, the guest program
will then setup the container-based system overlay that is
described in § 4.4.

Implementation status. VMSH currently targets the Linux
kernel. The VirtIO devices are standardised and portable to
other OS guests. However, the side-loaded kernel driver and
userland code need to be adapted to other operating systems.
We do not see this as a major limitation given that Linux
dominates the public cloud market share [25]. Due to the
low-level nature of the project, we only support the x86_64
architecture. We have plans to port our system to arm64. An
architecture port would require to extend the system call
injection, as well as register and page table handling. VMSH
is limited to KVM-based hypervisors, i.e., with hardware
acceleration, see Section 4.1. It also works with as well as in
nested VMs, given that the nested hypervisor is running on
KVM too [17].

6 Evaluation
We evaluate VMSH across the following dimensions: robust-
ness (§ 6.1), generality (§ 6.2), performance (§ 6.3), and effec-
tiveness (§ 6.4). Lastly, we evaluate three use-cases (§ 6.5).

Experiment setup. We perform our experiments on a ma-
chinewith an Intel Core i9-9900KCPUwith 8 cores (16 hyper-
threads, 16 MiB L3 cache), 64 GiB of DDR4 memory. All disk
benchmarks are run on a dedicated Intel P4600 NVMe 2TB
drive. The host OS is Linux version 5.12.14. For performance
related benchmarks, we use QEMU with KVM as the hyper-
visor and start the VM with 8 GiB of RAM and 4 vCPUs.
For better reproducibility, we pin the hypervisor vCPUs and

Supported Hypervisor QEMU, kvmtool, Firecracker, crosvm
Unsupp. Hypervisor Cloud Hypervisor
Tested LTS kernels v5.10, v5.4, v4.19, v4.14, v4.9, v4.4

Table 1. Hypervisor and kernel support.

disable Intel Turbo boost. Before each IO related benchmark,
we discard all data with the SSD TRIM command.

6.1 Robustness
We evaluate the robustness of VMSH, and more precisely
the VMSH block device, vmsh-blk, to ensure completeness
and correctness according to the POSIX standard.
Benchmark. We use xfstests, a test suite widely adopted
by the kernel community for fuzzing and regression testing
of file systems [60] and block devices [61]. xfstests contains
tests suites to ensure correctness and completeness of all file
system related system calls and their edge cases, including
crashes and reported bugs.
Methodology. We select the “quick" test group which con-
tains the majority of tests. We run those tests by provisioning
a physical block device with two XFS partitions to be sup-
plied as test and scratch partitions. We aim at being as robust
as the native and the QEMU block device (short: qemu-blk),
and define failure of this benchmark as vmsh-blk failing any
test that succeeds on native or qemu-blk. Since the "quick"
xfstests mostly produce small block device accesses, we
create a long running test, the sustained load test, that calcu-
lates the sha256 checksum of a large OS image.
Results. Out of the 619 tests, all succeed natively. For both
qemu-blk and vmsh-blk, three tests (0.5%) fail. The three
failed test cases are related to quota reporting, i.e., reporting
file system statistics. Additionally, some tests do not apply
to our setup, i.e., tests for a different file system or wrong
XFS version, and are automatically skipped by xfstests. To
summarise, since vmsh-blk passes all tests that are passed by
known-good devices, we conclude that the vmsh-blk device
has no regressions w.r.t. qemu-blk.

6.2 Generality
To showcase the generality of our approach, we evaluate the
portability of VMSH across different hypervisors and stable
Linux kernel versions (see Table 1).
Hypervisors. We develop VMSH using QEMU as the pri-
mary target. However, we expand our scope to the following
KVM-based hypervisors: QEMU [93], kvmtool [126], Fire-
cracker [2], crosvm [42], and Cloud Hypervisor [22].

VMSH is able to support 4 out of the 5 hypervisors. Cloud
Hypervisor is the exception as it uses PCIe’s MSI-X messages
for its interrupt handling. Therefore, it is incompatible with
MMIO as a VirtIO transport channel. We plan to extend
VMSH to support VirtIO over PCI for Cloud Hypervisor.

9

EuroSys ’22, April 5–8, 2022, RENNES, France Thalheim et al.

The second challenge we face is Firecracker’s restrictions
on what system calls are allowed to be executed by each
thread individually, using seccomp [59]. For now, we disable
the seccomp filter for Firecracker as it interferes with our
system call injection. In the future, we will either provide a
VMSH compatible seccomp profile for Firecracker or imple-
ment a heuristic that only runs system calls on threads that
are allowed by seccomp.

Kernel versions. Side-loading code into the Linux kernel
can be quite challenging as there is no stable internal kernel
API or ABI. To keep a project like VMSH maintainable, it is
necessary to ensure that only a minimal kernel API is used.
We develop VMSH against the latest version of the kernel,
5.12 at the time of development. To estimate how much
maintenance will be required to support future versions, we
backport to older kernel versions. We focus mainly on long-
term support (LTS) versions, as those versions are guaranteed
to receive security and build fixes for a long period. The
analysed kernel versions are listed in Table 1. We run VMs
using QEMU with the guests running each of the kernel
versions. We then try to attach to them with VMSH and
analyse the changes needed for that kernel version to work.
The most impactful change across versions is that the

memory layout of kernel symbols, which we need to parse
before uploading our own binary to the guest, changed twice.
However, by using consistency checks, i.e., checking whether
a kernel symbol name points to a valid string, we are able
to check all variants in parallel. For 2 out of the 10 required
kernel functions (kernel_read and kernel_write), we have to
support different variants to maintain compatibility.
Structure definitions that we pass to kernel functions

when registering devices are more brittle: 2 out of 4 kernel
structures have to be conditioned depending on the kernel
version. It took one person a week’s worth of time to cover
5 years of kernel development. From this, we conclude that
we can also support newer kernel versions in the future with
a reasonable amount of effort.

6.3 Performance
We evaluate VMSH’s performance using a range of work-
loads: (A) the Phoronix test suite [65], (B) impact of attaching
VMSH on the guest application’s performance, (C) fio [54],
and (D) the responsiveness of the console device.

A: Phoronix test suite. We start with evaluating how
VMSH affects performance of real-world applications based
on the Disk test suite [66] of the Phoronix Test Suite [65].
This suite consists of Compile bench [21], DBENCH [10],
fs_mark [125], Flexible I/O Tester [54], IOR [85], PostMark [58]
and Sqlite [24]. We use the default parameters defined by the
Phoronix Test Suite. In this benchmark, we compare QEMU’s
block device, qemu-blk, with vmsh-blk, our block device in
VMSH.

0 1 2 3

Compile Bench: Compile
Compile Bench: Create

Compile Bench: Read tree
Dbench: 1 Client

Dbench: 12 Clients
FS-Mark: 1000 Files, 1MB

FS-Mark: 1k Files, No Sync
FS-Mark: 4k Files, 32 Dirs

FS-Mark: 5k Files, 1MB, 4 Threads
Fio: Rand read, 4KB
Fio: Rand read, 2MB
Fio: Rand write, 4KB
Fio: Rand write, 2MB

Fio: Sequential read, 4KB
Fio: Sequential read, 2MB
Fio: Sequential write, 2KB
Fio: Sequential write, 2MB

IOR: 2MB
IOR: 4MB
IOR: 8MB

IOR: 16MB
IOR: 32MB
IOR: 64MB

IOR: 256MB
IOR: 512MB

IOR: 1025MB
PostMark: Disk transactions

Sqlite: 1 Threads
Sqlite: 8 Threads

Sqlite: 32 Threads
Sqlite: 64 Threads

Sqlite: 128 Threads

Lower is better

baseline

Figure 5. Relative performance of vmsh-blk for the Phoronix
Test Suite compared to qemu-blk.

The results are shown in Figure 5. On average, VMSH
is 1.5 × ±0.6 slower than qemu-blk. The fio tests accessing
large chunks of data (2 MB) are the slowest benchmarks,
being up to 3.7× slower than qemu-blk. fio is the only bench-
mark of the suite that uses direct IO. This bypasses the guest
page cache and hits the block device with every request,
which explains the slow down. Other applications (Com-
pileBench: IO workload of a Linux kernel build process, Post-
mark: mailserver workload with small files, FS-Mark: file
creation, DBENCH: file server workload) are more read and
file system metadata (inode) heavy. These types of work-
loads benefit more from a fast page cache and fast in-kernel
processing, and therefore have less or no overhead. Unexpect-
edly, Sqlite insertion turns out to be not very write-heavy,
but it spends significant time creating and unlinking its jour-
nal (inode heavy operation). The IOR benchmark writes a
file with increasing block size. In contrast to fio, it uses the
page cache with a hit rate of approximately 20%. Therefore,
there is less overhead when run in VMSH compared to the
baseline.
To summarise, we see acceptable overheads w.r.t. to the

real-world applications, with an average 1.5× slowdown
compared to qemu-blk. In practice, the guest workload appli-
cations will continue to use the QEMU block device, and not
vmsh-blk. They will therefore not suffer from these slow-
downs. The only applications affected by this slowdown are
the ones using the device mounted through vmsh-blk, which
should not impact developers’ productivity significantly.

10

VMSH: Hypervisor-agnostic Guest Overlays for VMs EuroSys ’22, April 5–8, 2022, RENNES, France

native

∗† qemu-blk

† wrap_syscall qemu-blk

∗ wrap_syscall vmsh-blk

† ioregionfd qemu-blk

∗ ioregionfd vmsh-blk

iotype = Direct/Block IO

0 0.5 1 1.5 2 2.5 3
Throughput [GB/s]

‡ qemu-blk

‡ qemu-9p

wrap_syscall vmsh-blk

ioregionfd vmsh-blk

Higher is better

iotype = File IO

Direction
read
write

(a) IO bandwidth/throughput. Best-case scenario.

native

∗† qemu-blk

† wrap_syscall qemu-blk

∗ wrap_syscall vmsh-blk

† ioregionfd qemu-blk

∗ ioregionfd vmsh-blk

iotype = Direct/Block IO

0 100 200 300 400
IOPS [k]

‡ qemu-blk

‡ qemu-9p

wrap_syscall vmsh-blk

ioregionfd vmsh-blk

Higher is better

iotype = File IO

Direction
read
write

(b) IO operations per second (IOPS). Worst case scenario.

Figure 6. fio with different configurations featuring qemu-blk and vmsh-blk with direct IO, and file IO with qemu-9p.

B: Guest device performance under VMSH. We now
evaluate the performance impact of VMSH on the other de-
vices attached to the guest, unrelated to VMSH. We do so by
running comparative benchmarks with fio [54] and measure
two metrics, throughput and the number of operations per
second (IOPS), on qemu-blk devices while a vmsh-blk device
is attached to the VM. Using fio’s libaio backend, we mea-
sure the maximal throughput by using the most favourable
conditions, i.e., large block sizes (256 KiB) and sequential
accesses. We measure the IOPS by choosing small block sizes
(4 KiB), thereby maximising per-access software overheads,
and sequential accesses, to avoid hardware bottlenecks.
Figure 6a shows the throughput results of these exper-

iments while Figure 6b shows IOPS. qemu-blk shows the
performance of the vanilla QEMU block device, with no
vmsh-blk device attached. The other setups with qemu-blk
show the performance of the device while a vmsh-blk device
is attached, using different implementations of the device
(ptrace or ioregionfd, see § 5). The interesting values for
guest device performance under VMSH are tagged by a †
symbol.
Our measurements show that when VMSH is attached

to a VM, the throughput and IOPS of qemu-blk devices on
the VM are the same as without VMSH when using the
ioregionfd implementation. However, with the wrap_syscall
implementation, both throughput and IOPS on the qemu-blk
device are negatively impacted. Read throughput is reduced
by 1.5× and IOPS by 6×. This performance degradation is
due to the overhead added to every system call performed

by QEMU and its devices. For every VMEXIT triggered by
an MMIO access, VMSH has to check if it is related to a
vmsh-blk device. This is not a problem with the ioregionfd
implementation since KVM already filters MMIO accesses
for the VMSH MMIO region in the kernel.
The overheads of the ptrace implementation violate the

goal of non-invasiveness. Since this is the most important
performance metric for VMSH, ioregionfd is the best imple-
mentation of vmsh-blk.

C: vmsh-blk performance with fio. Using the same fio
benchmarks, we now evaluate the intrinsic performance of
vmsh-blk. We first compare it to qemu-blk using direct/block
IO. We then compare our block device-based approach to
the host file system sharing using file based IO with the 9p
protocol (virtio-9p [96]). Results are also shown in Figure 6.
native shows the performance of the benchmarks running
directly on the host, with no virtualisation involved, and
showcases the best performance achievable on the machine.
The setups with vmsh-blk show the IO performance of the
device attached through VMSH with both implementations.

First, we observe that the native throughput can be achieved
through virtualisation with direct IO. However, in terms of
operations per second, native is at least 2× faster than any
virtualised solution. This is due to additional data copies
and context switches between the hypervisor and the host
kernel.
As for vmsh-blk, throughput and IOPS are halved com-

pared to qemu-blk, indifferent to the used implementation
(see results tagged with ∗). This degradation is expected

11

EuroSys ’22, April 5–8, 2022, RENNES, France Thalheim et al.

0 0.2 0.4 0.6 0.8 1
latency [ms]

native
ssh

vmsh-console

Lower is better

Figure 7. VMSH-console responsiveness compared to SSH.

since VMSH triggers more context switches than qemu-blk.
IO operations are cooperatively handled by the guest driver
running in the VM process and the VMSH virtual device
running on the host (see Figure 4). In this benchmark, the
time spent copying data between the guest and the host page
cache is identical for qemu-blk and vmsh-blk, thus leaving
the number of context switches as the main reason for the
performance hit. Over the same sampling period, we mea-
sure twice as many context switches for vmsh-blk compared
to qemu-blk.

With file-based IO, the read throughput significantly drops,
due to the use of the page cache (see ‡). fio sequentially
accesses new blocks and never reuses previously read blocks,
therefore suffering the cache’s overhead while never actually
using it. qemu-9p has poor IOPS compared to qemu-blk (7.8×
lower) because of the use of two stacked file systems. Every
operation goes through the guest file system and page cache,
as well as through the host’s file system and page cache,
therefore crippling qemu-9p’s IOPS.

Finally, vmsh-blk suffers a 94% write and 7% read overhead
in throughput compared to qemu-blk (40% write/2.3% read
overhead compared to qemu-9p), but still has good IOPS
(14% degradation compared to qemu-blk and is 7× better
than qemu-9p). The latter is the most important metric for
VMSH because attached devices would be more prone to
small sized IOs than large ones (see § 6.5 for use cases).
D: VMSH-console responsiveness. For interactive scenar-
ios, e.g., a console, throughput is less relevant than latency.
We evaluate this by comparing the latency of the VMSH
console to SSH and to "the minimum viewing time needed [by
a human] for visual comprehension" [91].

We measure the round-trip of a shell input by connecting
one end of a pseudo-terminal seat (pts) [73] to a shell. We
then use the other end to submit an echo command to the
shell and measure the time elapsed until the echo response
arrives. Our measurements show that, with around 0.9ms,
the latency of the VMSH console is very similar to the one
of SSH (see Figure 7). The latency of the VMSH console is an
order of magnitude faster than the capabilities of the human
eye [91], making it sufficient for real life use cases.

6.4 Effectiveness
We evaluate the effectiveness of VMSH for building light-
weight VMs by quantifying the reduction in VM image sizes
when the virtualised infrastructure provider deploys only

before after
0

20

40

60

80

100

im
ag

e
siz

e
[M

B]

Lo
w

er
 is

 b
et

te
r

Figure 8. VM size reduction for the top-40 Docker images
(average reduction: 60%).

the core application—additional tools in the VM images are
not necessary and can be loaded on demand thanks to our
overlays.
Dataset: Docker Hub.We analyse the top 40 most down-
loaded official container images from Docker Hub [28].
Methodology.Using the Docker Hub dataset, we build light-
weight VMs by identifying the files that are strictly required
for the application, while removing the unnecessary files,
e.g., additional tools or services. In particular, we run each
container image in a QEMU-based hypervisor [89]. In the
guest’s initial ramdisk, before the application starts, we add
a custom system call tracer based on sysdig to record all
paths opened by the VM [55]. Using this, we build a new
minimal VM image containing only these files and check
that the application still works.
Results. Figure 8 shows the distribution of the reduction in
VM image sizes to build lightweight VMs. Image sizes are
reduced by between 50% and 97%, on average by 60%. When
analysing the files removed in the process, we observe that
a number of tools are installed, including package managers,
coreutils and shells. Only 3 of the 40 containers are reduced
by less than 10%. We find that these containers are using a
single statically linked Go executable instead of depending
on OS images.

Note that since we are analysing container images instead
of VM images, these results are conservative. In general, VM
images package a higher number of tools that are unrelated
to the application, compared to containers. This is due to
the fact that VMs are harder to inspect, making it important
to have tools that are pre-built into the image. We believe
that with VMSH, we can enable an ecosystem where these
tools could be pruned from the VM images and attached on
demand at run time, thereby promoting lightweight VMs.

6.5 Use-cases
To show the applicability of VMSH in real-world scenarios,
we implement and publish three use cases.
Use-case #1: Serverless debug shell. First, we demonstrate
that VMSH fits well into serverless stacks, and improves
their dependability properties [86]. In general, Function-as-
a-Service (FaaS) systems are hard to debug because when

12

VMSH: Hypervisor-agnostic Guest Overlays for VMs EuroSys ’22, April 5–8, 2022, RENNES, France

requests cause errors, it is difficult to pinpoint the source of
the error [100]. To help developers debug FaaS deployments,
we provide themwith an interactive shell in lambda-function
instances. In particular, we integrate VMSH into vHive [119],
a knative-compliant stack running serverless workloads in
slim Firecracker-containerd VMs [2, 31]. Thereafter, we parse
logs from vHive’s lambda functions for errors, and then
locate the Firecracker process that hosts the faulty lambda
in order to attach to its hosting VM with VMSH and provide
an interactive shell to it. While the user interacts with this
shell provided by VMSH, our integration prevents shutdown
of the lambda-function’s VM by scale-down events. Overall,
VMSH can thus be integrated into existing virtualised lambda
environments, e.g., vHive, in a non-invasive manner without
changing the environment’s fundamental design.
Use-case #2: VM rescue system. In cloud environments,
when users lock themselves out of their VMs, they need res-
cue assistance from their hosting provider. Therefore, the
providers offer a range of rescue systems, e.g., password re-
covery services to their customers [26, 47]. However this
usually requires a user-installed agent in the VM image, a
reboot to access the file system directly, or booting a recov-
ery virtual machine that has access to the file system. With
VMSH, we build a simple, agent-less recovery image contain-
ing the chpasswd [102] command, that can be attached while
the VM is still running. In general, VMSH can be used to
build different kinds of rescue systems without interrupting
the VM.
Use-case #3: Package security scanner. With the increas-
ing popularity of containers, cloud providers offer services
to scan containers automatically for security vulnerabili-
ties [6, 39, 51]. With VMSH, this service can be expanded to
VMs without the need for additional agents inside the VMs.
In particular, we write a scanner that checks the installed
packages in Alpine Linux-based virtual machines against an
online database [3] of known security vulnerabilities and
report them.

7 Related Work
We discuss the related work that solves similar use-cases.
Guest agents. The trivial solution to many of VMSH’s use-
cases is to install agents connected to a network into the
VM guest. For instance, SSH [75] is typically used for inter-
active debugging. For tasks like automated management of
updates, user accounts or configurations, cloud providers
offer a multitude of agents [8, 40, 41, 43, 77, 82]. Agents
are also used for distributed tracing in serverless environ-
ments [19, 33, 56, 105, 114]. According to Sambasivan et
al., this variety is justified, as one size does not fit all use-
cases [100]. VMSH on the other hand is agent-less, attaches
on-demand and does not interfere with the guest’s userspace
by default. Its maintenance, configuration and policy enforce-
ment can be done independently from the guests.

Virtualisation. Chen and Noble describe the problem of
recovering high-level OS state from guest memory [20].
This ‘semantic gap’ has since been approached [38] and for-
malised [90]. Executing code inside a guest has been done by
reusing userspace execution contexts [30, 45] or by injecting
kernel modules [88, 103, 124], akin to VMSH’s sideloader.
Introspection usually aims at stealthiness and erases proofs
of tampering the guest’s execution [18, 37, 124].
To keep the host isolated from the guest, additional VMs

are proposed to contain the inspection tool [36, 88]. VMSH
has the same guarantees towards the host by only exposing
a dedicated block device and console. However, our guest
overlay is more tightly coupled to the guest, which enables
an easier tooling workflow for the user.
Container. Contrary to VM introspection as done by VMSH,
there is no semantic gap to bridge with containers. Cntr [111]
creates a nested namespace in a container. The host file sys-
tem is thenmade available via fuse andmounted into the root.
This way, a user can bring all their tools with them into the
container. In the context of Kubernetes, ephemeral contain-
ers [63] can be used to deploy software, e.g., an interactive
debugging environment, into another pod. This approach is
locked in to Kubernetes. Systemd-sysext [79] overlays file
systems with extension images using overlayfs [76]. It can
be used to install packages without modifying the underly-
ing file system. VMSH’s guest overlay, on the other hand,
avoids all dependencies on the guest userspace to maximise
generality.
VM miniaturisation. Library OSes [15, 16, 101, 104, 115,
117] reduce VM size by merging the kernel and user applica-
tion into a single binary. Unikraft [64] combines the aspects
of micro-library OSes and unikernels [69–71] to reduce the
kernel’s CPU and RAM overheads. VMSH is orthogonal since
it targets the overhead due to userspace tools not vital to
the application. Micro-kernels instead split up their func-
tionality horizontally, which is beneficial for verification and
security [12, 46, 48, 49, 62]. VMSH follows similar principles
by offering essential functionality in a separate host process
and guest overlay, acting upon IPC.

New hypervisors are built [2, 22, 42, 94], smaller and less
complex, to reduce overheads [80, 83, 95] and attack sur-
face. Many of them are written in memory-safe languages [2,
22, 42, 122], while others are formally verified [68]. Their
miniaturisation is also advanced, as virtual devices are ex-
tracted into separate processes with vhost-user [78, 108, 128].
While vhost still requires modifications on the hypervisor
side, VMSH does not and operates non-cooperatively.

8 Conclusion
In this work, we present VMSH, a hypervisor-agnostic sys-
tem to build lightweight VMs. VMSH provides an abstraction
of guest overlays to extend lightweight VMs at run time inde-
pendently of the guest and hypervisor. Using this abstraction,

13

EuroSys ’22, April 5–8, 2022, RENNES, France Thalheim et al.

VMSH enables lightweight VMs to extend their VM images
with additional tools and services on-demand at run time.
We design VMSH as a system for hypervisor-independent
side-loading into a VM, a generic guest-overlay that does
not impose limitations on both the original guest application
or the spawned service, and a device that can be attached to
hypervisors non-cooperatively. Our evaluation shows that
VMSH is compatible across many hypervisors and Linux
versions, that it does not slow down the original VM guest,
and that its use-cases have the potential to reduce image
sizes of lightweight VMs.
Artifact. VMSH is publicly available as an open-source
project along with the complete evaluation setup [112].
Acknowledgements. We thank our shepherd, Etienne Riv-
iere, our anonymous reviewers of paper and the artifact
evaluation comittee for their helpful feedback.

References
[1] Advanced Micro Devices, Inc. 2022. Homepage of AMD SEV. https:

//developer.amd.com/sev/.
[2] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight virtualization for serverless applications. In
17th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 20). USENIX Association, Santa Clara, CA, 419–434.

[3] Alpine maintainers. 2021. Alpine Linux security database. https:
//secdb.alpinelinux.org/.

[4] Amazon. 2021. Accessing Amazon CloudWatch logs for
AWS Lambda. https://docs.aws.amazon.com/lambda/latest/dg/
monitoring-cloudwatchlogs.html.

[5] Amazon. 2021. AWS X-Ray. https://aws.amazon.com/xray/.
[6] Amazon. 2021. Image scanning on Amazon ECR. https://docs.aws.

amazon.com/AmazonECR/latest/userguide/image-scanning.html.
[7] Amazon. 2021. Working with AWS Lambda function metrics. https://

docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html.
[8] Amazon. 2021. Working with AWS Systems Manager (SSM)

Agent. https://docs.aws.amazon.com/systems-manager/latest/
userguide/ssm-agent.html.

[9] Andreas Lundqvist. 2016. Linux distribution timeline. https://de.
wikipedia.org/wiki/Datei:Linux_Distribution_Timeline.svg.

[10] Ronnie Sahlberg Andrew Tridgell. 2021. Homepage of DBENCH.
https://dbench.samba.org/.

[11] Andy Honig and Nelly Porter. 2021. 7 ways we harden
our KVM hypervisor at Google Cloud: security in plaintext.
https://cloud.google.com/blog/products/gcp/7-ways-we-harden-
our-kvm-hypervisor-at-google-cloud-security-in-plaintext.

[12] Nils Asmussen, Marcus Völp, Benedikt Nöthen, Hermann Härtig, and
Gerhard Fettweis. 2016. M3: A hardware/operating-system co-design
to tame heterogeneous manycores. In Proceedings of the Twenty-First
International Conference on Architectural Support for Programming
Languages and Operating Systems, Vol. 51. Association for Computing
Machinery, New York, NY, USA, 189–203.

[13] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink,
Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah,
Aleksander Slominski, et al. 2017. Serverless computing: Current
trends and open problems. In Research advances in cloud computing.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1–20.

[14] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003.
Xen and the Art of Virtualization. In Proceedings of the Nineteenth

ACM Symposium on Operating Systems Principles. Association for
Computing Machinery, New York, NY, USA, 164–177.

[15] Andrew Baumann, Dongyoon Lee, Pedro Fonseca, Lisa Glendenning,
Jacob R Lorch, Barry Bond, Reuben Olinsky, and Galen C Hunt. 2013.
Composing OS extensions safely and efficiently with Bascule. In
Proceedings of the 8th ACM European Conference on Computer Systems.
Association for Computing Machinery, New York, NY, USA, 239–252.

[16] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David
Mazières, and Christos Kozyrakis. 2012. Dune: Safe user-level access
to privileged CPU features. In 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12). USENIX Association,
Hollywood, CA, 335–348.

[17] Muli Ben-Yehuda, Michael D Day, Zvi Dubitzky, Michael Factor, Na-
dav Har’El, Abel Gordon, Anthony Liguori, Orit Wasserman, and
Ben-Ami Yassour. 2010. The turtles project: Design and implementa-
tion of nested virtualization. In 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 10).

[18] Martim Carbone, Matthew Conover, Bruce Montague, and Wenke
Lee. 2012. Secure and robust monitoring of virtual machines through
guest-assisted introspection. In International workshop on recent ad-
vances in intrusion detection. Springer, Springer Berlin Heidelberg,
Berlin, Heidelberg, 22–41.

[19] Mike Y Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric
Brewer. 2002. Pinpoint: Problem determination in large, dynamic in-
ternet services. In Proceedings International Conference on Dependable
Systems and Networks. IEEE, Washington, DC, USA, 595–604.

[20] Peter M Chen and Brian D Noble. 2001. When virtual is better than
real [operating system relocation to virtual machines]. In Proceed-
ings eighth workshop on hot topics in operating systems. IEEE, Elmau,
Germany, 133–138.

[21] Chris Mason <chris.mason@oracle.com>. 2021. Homepage of Com-
pilebench. https://oss.oracle.com/~mason/compilebench/.

[22] Cloud-hypervisor maintainers. 2021. Project page of cloud-
hypervisor. https://github.com/cloud-hypervisor/cloud-hypervisor.

[23] Cloud Native computing foundation. 2021. Containerd – An industry-
standard container runtime with an emphasis on simplicity, robust-
ness and portability. https://containerd.io/.

[24] SQLite Consortium. 2021. Homepage of SQLite. http://sqlite.org/.
[25] Jonathan Corbet. 2017. Linux Kernel Development Report. Technical

Report. Linux foundation.
[26] Digitalocean. 2021. How to Regain Access to Droplets using the

Recovery Console. https://docs.digitalocean.com/products/droplets/
resources/recovery-console/.

[27] DMTF. 2022. Specifications of the Redfish standard. https://www.
dmtf.org/standards/redfish.

[28] Docker. 2021. Explore official Docker images. https://hub.docker.
com/search?q=&type=image&image_filter=official.

[29] Docker. 2022. Docker homepage. https://www.docker.com/.
[30] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin,

and Wenke Lee. 2011. Virtuoso: Narrowing the semantic gap in
virtual machine introspection. In 2011 IEEE symposium on security
and privacy. IEEE, Oakland, California, 297–312.

[31] Firecracker contributors. 2021. firecracker-containerd. https://github.
com/firecracker-microvm/firecracker-containerd.

[32] Firecracker contributors. 2021. Firecracker kernel configura-
tion. https://github.com/firecracker-microvm/firecracker/blob/main/
resources/microvm-kernel-x86_64.config.

[33] Rodrigo Fonseca, George Porter, Randy H Katz, and Scott Shenker.
2007. X-trace: A pervasive network tracing framework. In 4th USENIX
Symposium on Networked Systems Design & Implementation (NSDI
07). USENIX Association, USA, 20.

[34] Openstack Foundation. 2021. Openstack: Open source cloud comput-
ing infrastructure. https://www.openstack.org/.

[35] FreeBSD maintainers. 2021. ksyms – kernel symbol table inter-
face. https://www.freebsd.org/cgi/man.cgi?query=ksyms&sektion=

14

https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://secdb.alpinelinux.org/
https://secdb.alpinelinux.org/
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-cloudwatchlogs.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-cloudwatchlogs.html
https://aws.amazon.com/xray/
https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-scanning.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-scanning.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-agent.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-agent.html
https://de.wikipedia.org/wiki/Datei:Linux_Distribution_Timeline.svg
https://de.wikipedia.org/wiki/Datei:Linux_Distribution_Timeline.svg
https://dbench.samba.org/
https://cloud.google.com/blog/products/gcp/7-ways-we-harden-our-kvm-hypervisor-at-google-cloud-security-in-plaintext
https://cloud.google.com/blog/products/gcp/7-ways-we-harden-our-kvm-hypervisor-at-google-cloud-security-in-plaintext
https://oss.oracle.com/~mason/compilebench/
https://github.com/cloud-hypervisor/cloud-hypervisor
https://containerd.io/
http://sqlite.org/
https://docs.digitalocean.com/products/droplets/resources/recovery-console/
https://docs.digitalocean.com/products/droplets/resources/recovery-console/
https://www.dmtf.org/standards/redfish
https://www.dmtf.org/standards/redfish
https://hub.docker.com/search?q=&type=image&image_filter=official
https://hub.docker.com/search?q=&type=image&image_filter=official
https://www.docker.com/
https://github.com/firecracker-microvm/firecracker-containerd
https://github.com/firecracker-microvm/firecracker-containerd
https://github.com/firecracker-microvm/firecracker/blob/main/resources/microvm-kernel-x86_64.config
https://github.com/firecracker-microvm/firecracker/blob/main/resources/microvm-kernel-x86_64.config
https://www.openstack.org/
https://www.freebsd.org/cgi/man.cgi?query=ksyms&sektion=4&manpath=FreeBSD+8.0-RELEASE
https://www.freebsd.org/cgi/man.cgi?query=ksyms&sektion=4&manpath=FreeBSD+8.0-RELEASE

VMSH: Hypervisor-agnostic Guest Overlays for VMs EuroSys ’22, April 5–8, 2022, RENNES, France

4&manpath=FreeBSD+8.0-RELEASE.
[36] Yangchun Fu and Zhiqiang Lin. 2013. Exterior: Using a dual-vm based

external shell for guest-os introspection, configuration, and recovery.
Acm Sigplan Notices 48, 7 (2013), 97–110.

[37] Yangchun Fu, Junyuan Zeng, and Zhiqiang Lin. 2014. HYPERSHELL:
A Practical Hypervisor Layer Guest OS Shell for Automated In-VM
Management. In USENIX Annual Technical Conference (USENIX ATC).
USENIX, Philadelphia, PA, 85–96.

[38] Tal Garfinkel, Mendel Rosenblum, et al. 2003. A virtual machine
introspection based architecture for intrusion detection.. In Ndss,
Vol. 3. Citeseer, San Diego, California, USA, 191–206.

[39] Google. 2021. Container analysis and vulnerability scanning. https:
//cloud.google.com/container-registry/docs/container-analysis.

[40] Google. 2021. Google OS Config Agent. https://github.com/
GoogleCloudPlatform/osconfig.

[41] Google. 2021. Guest Agent for Google Compute Engine. https:
//github.com/GoogleCloudPlatform/guest-agent.

[42] Google. 2021. Homepage of crosvm. https://chromium.googlesource.
com/chromiumos/platform/crosvm/.

[43] Google. 2021. Installing the guest environment. https://cloud.google.
com/compute/docs/images/install-guest-environment.

[44] Google. 2021. Nested virtualization overview. https://cloud.google.
com/compute/docs/instances/nested-virtualization/overview.

[45] Zhongshu Gu, Zhui Deng, Dongyan Xu, and Xuxian Jiang. 2011.
Process implanting: A new active introspection framework for vir-
tualization. In 2011 IEEE 30th International Symposium on Reliable
Distributed Systems. IEEE, Madrid, Spain, 147–156.

[46] Gernot Heiser and Kevin Elphinstone. 2016. L4 microkernels: The
lessons from 20 years of research and deployment. ACM Transactions
on Computer Systems (TOCS) 34, 1 (2016), 1–29.

[47] Hetzner AG. 2021. Hetzner Rescue System. https://docs.hetzner.com/
robot/dedicated-server/troubleshooting/hetzner-rescue-system/.

[48] Matthias Hille, Nils Asmussen, Pramod Bhatotia, and Hermann Här-
tig. 2019. SemperOS: ADistributed Capability System. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19). USENIX Association,
Renton, WA, 709–722. https://www.usenix.org/conference/atc19/
presentation/hille

[49] Matthias Hille, Nils Asmussen, Hermann Härtig, and Pramod Bhato-
tia. 2020. A heterogeneous microkernel OS for Rack-Scale systems.
In APSys ’20: 11th ACM SIGOPS Asia-Pacific Workshop on Systems,
Tsukuba, Japan, August 24-25, 2020, Taesoo Kim and Patrick P. C. Lee
(Eds.). ACM, 50–58. https://doi.org/10.1145/3409963.3410487

[50] IBM. 2021. Getting started with KVM. https://www.ibm.com/docs/
en/cic/1.1.3?topic=SSLL2F_1.1.3/com.ibm.cloudin.doc/overview/
Getting_started_tutorial.html.

[51] IBM. 2021. IBM’s Vulnerability Advisor. https://www.ibm.com/docs/
en/cloud-private/3.2.0?topic=guide-vulnerability-advisor.

[52] Intel. 2013. Intelligent Platform Management Interface Specification
v2.0 rev. 1.1. https://www.intel.de/content/www/de/de/products/
docs/servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-1.html.

[53] Yeongjin Jang, Sangho Lee, and Taesoo Kim. 2016. Breaking Kernel
Address Space Layout Randomization with Intel TSX. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. Association for Computing Machinery, New York, NY, USA,
380–392.

[54] Jens Axboe. 2021. Flexible I/O Tester. https://github.com/axboe/fio.
[55] Jörg Thalheim. 2021. Runq fork with our modifications. https://

github.com/Mic92/runq/commits/vmsh.
[56] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison Gao, Wiktor

Kuropatwa, Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan,
Brendan Viscomi, et al. 2017. Canopy: An end-to-end performance
tracing and analysis system. In Proceedings of the 26th Symposium on
Operating Systems Principles. Association for Computing Machinery,
New York, NY, USA, 34–50.

[57] Kata maintainers. 2021. Kata container kernel configura-
tion. https://github.com/kata-containers/kata-containers/blob/main/
tools/packaging/kernel/configs/x86_64_kata_kvm_4.14.x.

[58] Jeffrey Katcher. 1997. PostMark: A New File System Benchmark. Tech-
nical Report. Network Appliance Inc.

[59] Linux kernel documentation. 2021. Seccomp BPF (SECure COMPut-
ing with filters). https://www.kernel.org/doc/html/latest/userspace-
api/seccomp_filter.html.

[60] Kernel maintainers. 2021. What is xfstests? https:
//kernel.googlesource.com/pub/scm/fs/ext2/xfstests-bld/+/HEAD/
Documentation/what-is-xfstests.md.

[61] Kernel maintainers. 2021. xfstests-dev. https://git.kernel.org/pub/
scm/fs/xfs/xfstests-dev.git/.

[62] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, et al. 2009. seL4: Formal verification
of an OS kernel. In Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles. Association for Computing Machinery,
New York, NY, USA, 207–220.

[63] Kubernetes. 2021. Ephemeral Containers. https://kubernetes.io/docs/
concepts/workloads/pods/ephemeral-containers/.

[64] Simon Kuenzer, Vlad-Andrei Bădoiu, Hugo Lefeuvre, Sharan San-
thanam, Alexander Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu,
Ştefan Teodorescu, Costi Răducanu, et al. 2021. Unikraft: fast, special-
ized unikernels the easy way. In Proceedings of the Sixteenth European
Conference on Computer Systems. Association for Computing Machin-
ery, New York, NY, USA, 376–394.

[65] Michael Larabel. 2021. Homepage of Phoronix test suite. https:
//www.phoronix-test-suite.com/.

[66] Michael Larabel. 2021. Wiki page for the Phoronix disk test suite.
https://openbenchmarking.org/suite/pts/disk.

[67] Shih-Wei Li, John S. Koh, and Jason Nieh. 2019. Protecting Cloud Vir-
tual Machines from Hypervisor and Host Operating System Exploits.
In 28th USENIX Security Symposium (USENIX Security 19). USENIX
Association, Santa Clara, CA, USA, 1357–1374.

[68] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang
Hui. 2021. A Secure and Formally Verified Linux KVM Hypervisor. In
2021 IEEE Symposium on Security and Privacy (SP). IEEE, San Francisco,
CA, USA, 1782–1799.

[69] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas
Gazagnaire, David Sheets, Dave Scott, Richard Mortier, Amir
Chaudhry, Balraj Singh, Jon Ludlam, et al. 2015. Jitsu: Just-in-time
summoning of unikernels. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15). USENIX Association,
USA, 559–573.

[70] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. 2013. Unikernels: Library operating systems for
the cloud. ACM SIGARCH Computer Architecture News 41, 1 (2013),
461–472.

[71] Anil Madhavapeddy and David J Scott. 2014. Unikernels: the rise
of the virtual library operating system. Commun. ACM 57, 1 (2014),
61–69.

[72] Kernel maintainers. 2021. Kernel Virtual Machine (KVM). https:
//www.linux-kvm.org/page/Main_Page.

[73] Linux maintainers. 2021. pts(4) Linux Programmer’s Manual. Linux
foundation.

[74] Libvirt maintainers. 2021. Virsh management user interface – dom-
stats. https://www.libvirt.org/manpages/virsh.html#domstats.

[75] OpenBSD maintainers. 2021. OpenSSH remote login client. OpenBSD.
[76] Overlayfs maintainers. 2021. Overlayfs FUSE implementation. CNCF.
[77] QEMU maintainers. 2021. QEMU-GA(8) QEMU Guest Agent manual.

QEMU.
[78] QEMU maintainers. 2021. Vhost-user protocol. https://qemu.

readthedocs.io/en/latest/interop/vhost-user.html.
15

https://www.freebsd.org/cgi/man.cgi?query=ksyms&sektion=4&manpath=FreeBSD+8.0-RELEASE
https://cloud.google.com/container-registry/docs/container-analysis
https://cloud.google.com/container-registry/docs/container-analysis
https://github.com/GoogleCloudPlatform/osconfig
https://github.com/GoogleCloudPlatform/osconfig
https://github.com/GoogleCloudPlatform/guest-agent
https://github.com/GoogleCloudPlatform/guest-agent
https://chromium.googlesource.com/chromiumos/platform/crosvm/
https://chromium.googlesource.com/chromiumos/platform/crosvm/
https://cloud.google.com/compute/docs/images/install-guest-environment
https://cloud.google.com/compute/docs/images/install-guest-environment
https://cloud.google.com/compute/docs/instances/nested-virtualization/overview
https://cloud.google.com/compute/docs/instances/nested-virtualization/overview
https://docs.hetzner.com/robot/dedicated-server/troubleshooting/hetzner-rescue-system/
https://docs.hetzner.com/robot/dedicated-server/troubleshooting/hetzner-rescue-system/
https://www.usenix.org/conference/atc19/presentation/hille
https://www.usenix.org/conference/atc19/presentation/hille
https://doi.org/10.1145/3409963.3410487
https://www.ibm.com/docs/en/cic/1.1.3?topic=SSLL2F_1.1.3/com.ibm.cloudin.doc/overview/Getting_started_tutorial.html
https://www.ibm.com/docs/en/cic/1.1.3?topic=SSLL2F_1.1.3/com.ibm.cloudin.doc/overview/Getting_started_tutorial.html
https://www.ibm.com/docs/en/cic/1.1.3?topic=SSLL2F_1.1.3/com.ibm.cloudin.doc/overview/Getting_started_tutorial.html
https://www.ibm.com/docs/en/cloud-private/3.2.0?topic=guide-vulnerability-advisor
https://www.ibm.com/docs/en/cloud-private/3.2.0?topic=guide-vulnerability-advisor
https://www.intel.de/content/www/de/de/products/docs/servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-1.html
https://www.intel.de/content/www/de/de/products/docs/servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-1.html
https://github.com/axboe/fio
https://github.com/Mic92/runq/commits/vmsh
https://github.com/Mic92/runq/commits/vmsh
https://github.com/kata-containers/kata-containers/blob/main/tools/packaging/kernel/configs/x86_64_kata_kvm_4.14.x
https://github.com/kata-containers/kata-containers/blob/main/tools/packaging/kernel/configs/x86_64_kata_kvm_4.14.x
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://kernel.googlesource.com/pub/scm/fs/ext2/xfstests-bld/+/HEAD/Documentation/what-is-xfstests.md
https://kernel.googlesource.com/pub/scm/fs/ext2/xfstests-bld/+/HEAD/Documentation/what-is-xfstests.md
https://kernel.googlesource.com/pub/scm/fs/ext2/xfstests-bld/+/HEAD/Documentation/what-is-xfstests.md
https://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git/
https://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git/
https://kubernetes.io/docs/concepts/workloads/pods/ephemeral-containers/
https://kubernetes.io/docs/concepts/workloads/pods/ephemeral-containers/
https://www.phoronix-test-suite.com/
https://www.phoronix-test-suite.com/
https://openbenchmarking.org/suite/pts/disk
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page
https://www.libvirt.org/manpages/virsh.html#domstats
https://qemu.readthedocs.io/en/latest/interop/vhost-user.html
https://qemu.readthedocs.io/en/latest/interop/vhost-user.html

EuroSys ’22, April 5–8, 2022, RENNES, France Thalheim et al.

[79] Systemd maintainers. 2021. Systemd-sysext: Activates System Exten-
tion Images. https://www.freedesktop.org/software/systemd/man/
systemd-sysext.html.

[80] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon
Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe
Huici. 2017. My VM is Lighter (and Safer) than your Container. In
Proceedings of the 26th Symposium on Operating Systems Principles.
Association for Computing Machinery, New York, NY, USA, 218–233.

[81] Microsoft. 2021. CVE-2021-38647: Open Management Infrastructure
Remote Code Execution Vulnerability. https://msrc.microsoft.com/
update-guide/vulnerability/CVE-2021-38647.

[82] Microsoft. 2021. Open Management Infrastructure (OMI). https:
//github.com/microsoft/omi.

[83] Philipp Mieden and Philippe Partarrieu. 2019. Performance analy-
sis of KVM-based microVMs orchestrated by Firecracker and QEMU.
Technical Report. University of Amsterdam.

[84] Maintainers of nix. 2022. Homepage of nix . https://nixos.org/
download.html.

[85] The Regents of the University of California. 2021. Homepage of IOR.
https://ior.readthedocs.io/en/latest/.

[86] Peter Okelmann and Jörg Thalheim. 2021. lambda-pirate. https:
//github.com/pogobanane/lambda-pirate.

[87] Oracle. 2021. Oracle Virtualization. https://www.oracle.com/
virtualization/.

[88] Bryan D Payne, Martim Carbone, Monirul Sharif, and Wenke Lee.
2008. Lares: An architecture for secure active monitoring using
virtualization. In 2008 IEEE Symposium on Security and Privacy (sp
2008). IEEE, Oakland, CA, USA, 233–247.

[89] Peter Morjan. 2021. Runq - a hypervisor-based Docker runtime.
https://github.com/gotoz/runq.

[90] Jonas Pfoh, Christian Schneider, and Claudia Eckert. 2009. A formal
model for virtual machine introspection. In Proceedings of the 1st ACM
workshop on Virtual machine security. Association for Computing
Machinery, New York, NY, USA, 1–10.

[91] Mary C Potter, Brad Wyble, Carl Erick Hagmann, and Emily S Mc-
Court. 2014. Detecting meaning in RSVP at 13 ms per picture. Atten-
tion, Perception, & Psychophysics 76, 2 (2014), 270–279.

[92] Project Zero. 2021. An EPYC escape: Case-study of a KVM
breakout. https://googleprojectzero.blogspot.com/2021/06/an-epyc-
escape-case-study-of-kvm.html.

[93] Qemu maintainers. 2021. Homepage of qemu. https://www.qemu.
org/.

[94] Qemu maintainers. 2021. QEMU - ‘microvm’ virtual platform (mi-
crovm). https://qemu.readthedocs.io/en/latest/system/i386/microvm.
html.

[95] Qemu maintainers. 2021. QEMU version 4.2.0 released. https://www.
qemu.org/2019/12/13/qemu-4-2-0/.

[96] Qemu wiki authors. 2021. Documentation 9psetup. https://wiki.qemu.
org/Documentation/9psetup.

[97] Avi Qumranet, Yaniv Qumranet, Dor Qumranet, Uri Qumranet, and
Anthony Liguori. 2007. KVM: The Linux virtual machine monitor.
Proceedings Linux Symposium 15 (2007).

[98] Red Hat Customer Portal. 2021. CVE-2015-3456. https://access.
redhat.com/security/cve/CVE-2015-3456.

[99] Rusty Russell. 2008. Virtio: Towards a de-Facto Standard for Virtual
I/O Devices. SIGOPS Oper. Syst. Rev. 42, 5 (July 2008), 95–103. https:
//doi.org/10.1145/1400097.1400108

[100] Raja R Sambasivan, Rodrigo Fonseca, Ilari Shafer, and Gregory R
Ganger. 2014. So, you want to trace your distributed system? Key
design insights from years of practical experience. Technical Report.
Carnegie Mellon University.

[101] Dan Schatzberg, James Cadden, Han Dong, Orran Krieger, and
Jonathan Appavoo. 2016. Ebbrt: A framework for building per-
application library operating systems. In 12th USENIX Symposium
on Operating Systems Design and Implementation (SDI 16). USENIX

Association, USA, 671–688.
[102] shadow-utils maintainer. 2021. chpasswd(8) shadow-utils manual.

Shadow maintainers.
[103] Monirul I Sharif, Wenke Lee, Weidong Cui, and Andrea Lanzi. 2009.

Secure in-vm monitoring using hardware virtualization. In Proceed-
ings of the 16th ACM conference on Computer and communications
security. Association for Computing Machinery, New York, NY, USA,
477–487.

[104] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan,
Christina Delimitrou, Robbert Van Renesse, and Hakim Weather-
spoon. 2019. X-containers: Breaking down barriers to improve per-
formance and isolation of cloud-native containers. In Proceedings of
the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems. 121–135.

[105] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat
Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan
Shanbhag. 2010. Dapper, a Large-Scale Distributed Systems Tracing
Infrastructure. Technical Report. Google, Inc.

[106] Simon Sharwood. 2021. AWS adopts home-brewed KVM as new
hypervisor. https://www.theregister.com/2017/11/07/aws_writes_
new_kvm_based_hypervisor_to_make_its_cloud_go_faster/.

[107] Stefan Hajnoczi. 2020. Proposal for MMIO/PIO dispatch file descrip-
tors. https://www.spinics.net/lists/kvm/msg208139.html.

[108] Jianfeng Tan, Cunming Liang, Huawei Xie, Qian Xu, Jiayu Hu, Heqing
Zhu, and Yuanhan Liu. 2017. VIRTIO-USER: A new versatile channel
for kernel-bypass networks. In Proceedings of the Workshop on Kernel-
Bypass Networks. Association for Computing Machinery, New York,
NY, USA, 13–18.

[109] Jörg Thalheim. 2022. Maintained fork of Linux for Ioregionfd patch.
https://github.com/Mic92/linux/tree/ioregion-5.14.

[110] Jörg Thalheim. 2022. Run the evaluation. https://github.com/Mic92/
vmsh/blob/main/EVALUATION.md.

[111] Jörg Thalheim, Pramod Bhatotia, Pedro Fonseca, and Baris Kasikci.
2018. Cntr: Lightweight OS Containers. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18). USENIX Association, Boston,
MA, 199–212.

[112] Jörg Thalheim and Peter Okelmann. 2022. Project page of vmsh.
https://github.com/Mic92/vmsh.

[113] Jörg Thalheim and Peter Okelmann. 2022. Source code of VMSH.
https://doi.org/10.5281/zenodo.6337102.

[114] Jörg Thalheim, Antonio Rodrigues, Istemi Ekin Akkus, Pramod Bha-
totia, Ruichuan Chen, Bimal Viswanath, Lei Jiao, and Christof Fetzer.
2017. Sieve: Actionable insights frommonitoredmetrics in distributed
systems. In Proceedings of the 18th ACM/IFIP/USENIX Middleware Con-
ference. Association for Computing Machinery, New York, NY, USA,
14–27.

[115] Jörg Thalheim, Harshavardhan Unnibhavi, Christian Priebe, Pramod
Bhatotia, and Peter Pietzuch. 2021. rkt-io: a direct I/O stack for
shielded execution. In Proceedings of the Sixteenth European Confer-
ence on Computer Systems. 490–506.

[116] Bohdan Trach, Oleksii Oleksenko, Franz Gregor, Pramod Bhato-
tia, and Christof Fetzer. 2019. Clemmys: Towards Secure Remote
Execution in FaaS. In Proceedings of the 12th ACM International
Conference on Systems and Storage (Haifa, Israel) (SYSTOR ’19). As-
sociation for Computing Machinery, New York, NY, USA, 44–54.
https://doi.org/10.1145/3319647.3325835

[117] Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain,
William Jannen, Jitin John, Harry A Kalodner, Vrushali Kulkarni,
Daniela Oliveira, and Donald E Porter. 2014. Cooperation and security
isolation of library OSes for multi-process applications. In Proceedings
of the Ninth European Conference on Computer Systems. Association
for Computing Machinery, New York, NY, USA, 1–14.

[118] Michael S. Tsirkin and Cornelia Huck. 11 April 2019. Virtual I/O
Device (VIRTIO) Version 1.1. OASIS Committee Specification 01 1.1

16

https://www.freedesktop.org/software/systemd/man/systemd-sysext.html
https://www.freedesktop.org/software/systemd/man/systemd-sysext.html
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-38647
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-38647
https://github.com/microsoft/omi
https://github.com/microsoft/omi
https://nixos.org/download.html
https://nixos.org/download.html
https://ior.readthedocs.io/en/latest/
https://github.com/pogobanane/lambda-pirate
https://github.com/pogobanane/lambda-pirate
https://www.oracle.com/virtualization/
https://www.oracle.com/virtualization/
https://github.com/gotoz/runq
https://googleprojectzero.blogspot.com/2021/06/an-epyc-escape-case-study-of-kvm.html
https://googleprojectzero.blogspot.com/2021/06/an-epyc-escape-case-study-of-kvm.html
https://www.qemu.org/
https://www.qemu.org/
https://qemu.readthedocs.io/en/latest/system/i386/microvm.html
https://qemu.readthedocs.io/en/latest/system/i386/microvm.html
https://www.qemu.org/2019/12/13/qemu-4-2-0/
https://www.qemu.org/2019/12/13/qemu-4-2-0/
https://wiki.qemu.org/Documentation/9psetup
https://wiki.qemu.org/Documentation/9psetup
https://access.redhat.com/security/cve/CVE-2015-3456
https://access.redhat.com/security/cve/CVE-2015-3456
https://doi.org/10.1145/1400097.1400108
https://doi.org/10.1145/1400097.1400108
https://www.theregister.com/2017/11/07/aws_writes_new_kvm_based_hypervisor_to_make_its_cloud_go_faster/
https://www.theregister.com/2017/11/07/aws_writes_new_kvm_based_hypervisor_to_make_its_cloud_go_faster/
https://www.spinics.net/lists/kvm/msg208139.html
https://github.com/Mic92/linux/tree/ioregion-5.14
https://github.com/Mic92/vmsh/blob/main/EVALUATION.md
https://github.com/Mic92/vmsh/blob/main/EVALUATION.md
https://github.com/Mic92/vmsh
https://doi.org/10.5281/zenodo.6337102
https://doi.org/10.1145/3319647.3325835

VMSH: Hypervisor-agnostic Guest Overlays for VMs EuroSys ’22, April 5–8, 2022, RENNES, France

(11 April 2019), 1. Latest version: https://docs.oasis-open.org/virtio/
virtio/v1.1/cs01/virtio-v1.1-cs01.html.

[119] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion,
and Boris Grot. 2021. Benchmarking, Analysis, and Optimization
of Serverless Function Snapshots. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’21). ACM, New York, NY,
USA, 559–572. https://doi.org/10.1145/3445814.3446714

[120] Arjan van de Ven. 2015. An introduction to Clear Containers. https:
//lwn.net/Articles/644675/.

[121] Rust vmm maintainers. 2021. rust-vmm . https://github.com/rust-
vmm.

[122] Rust vmm maintainers. 2021. vmm-reference. https://github.com/
rust-vmm/vmm-reference.

[123] VMware. 2021. VMware ESXi: The Purpose-Built Bare Metal Hyper-
visor. https://www.vmware.com/products/esxi-and-esx.html.

[124] Sebastian Vogl, Fatih Kilic, Christian Schneider, and Claudia Eckert.
2013. X-tier: Kernel module injection. In International Conference on
Network and System Security. Springer, Springer Berlin Heidelberg,
Berlin, Heidelberg, 192–205.

[125] Ric Wheeler. 2021. Homepage of fs_mark. https://sourceforge.net/
projects/fsmark/.

[126] Will Deacon. 2021. Homepage of kvmtool. https://github.com/
kvmtool/kvmtool.

[127] Yuping Xing and Yongzhao Zhan. 2012. Virtualization and cloud
computing. In Future Wireless Networks and Information Systems.
Springer, Berlin, Heidelberg, 305–312.

[128] Ziye Yang, Changpeng Liu, Yanbo Zhou, Xiaodong Liu, and Gang
Cao. 2018. Spdk vhost-nvme: Accelerating i/os in virtual machines on
nvme ssds via user space vhost target. In 2018 IEEE 8th International
Symposium on Cloud and Service Computing (SC2). IEEE, Paris, France,
67–76.

17

https://docs.oasis-open.org/virtio/virtio/v1.1/cs01/virtio-v1.1-cs01.html
https://docs.oasis-open.org/virtio/virtio/v1.1/cs01/virtio-v1.1-cs01.html
https://doi.org/10.1145/3445814.3446714
https://lwn.net/Articles/644675/
https://lwn.net/Articles/644675/
https://github.com/rust-vmm
https://github.com/rust-vmm
https://github.com/rust-vmm/vmm-reference
https://github.com/rust-vmm/vmm-reference
https://www.vmware.com/products/esxi-and-esx.html
https://sourceforge.net/projects/fsmark/
https://sourceforge.net/projects/fsmark/
https://github.com/kvmtool/kvmtool
https://github.com/kvmtool/kvmtool

EuroSys ’22, April 5–8, 2022, RENNES, France Thalheim et al.

A Artifact Appendix
A.1 Abstract
This artifact contains the implementation and scripts to
reproduce the experiments and figures from the Eurosys
2022 paper — "VMSH: Hypervisor-agnostic Guest Overlays
for VMs" by J. Thalheim, P. Okelmann, H. Unnibhavi, R.
Gouicem, P. Bhatotia. VMSH provides a hypervisor-agnostic
abstraction for KVM that enables on-demand attachment of
services to a running VM—allowing developers to provide
minimal, lightweight images without compromising their
functionality.

A.2 Description & Requirements
A.2.1 How to access. The latest source code of VMSH
can be found on github [112]. The version used during the
Artifact Evaluation has been also uploaded to zenodo [113].
This repository also contains most of the evaluation code
and graph-generation scripts with two exceptions:

In the evaluation of effectiveness (Section 6.4), we forked a
QEMU-based hypervisor called runq (see [55]) and extended
it with tracing functionality to measure which files are used
in a container. In the same repo, we also put all the scripts
needed to reproduce this part of the evaluation.

For the use case of the serverless debug shell in Section 6.5,
we have created a separate project page [86]. The repo also
contains the necessary configuration for setting up a vHive [119]
instance, the serverless platform on which we tested. The
instructions on how we run the effectiveness evaluation and
the serverless debug shell are also included in the VMSH
repository.

A.2.2 Hardware dependencies. VMSH requires commod-
ity x86-CPUs with native hardware-virtualisation. For better
reproduciblity, we provide information about the hardware
we used to reproduce the same results in our repository
evaluation documentation [110]. For measurements we used
a dedicated NVME drive that was reseted and reformatted
after each run.

A.2.3 Software dependencies. We require the following
software configuration to reproduce our experimental re-
sults.

• Operating system: Linux, compiled with the CONFIG_
IKHEADERS=m kernel compile option, for better perfor-
mancewe also optionally use the ioregionfd patch [109]

• Nix [84]: For reproducibility, we use the Nix package
manager to download all the build dependencies. We
have fixed the package versions to ensure reproducible
evaluation.

• Docker [29] to evaluate Experiment E7. “VM size re-
duction”

• Python 3.7 or newer for the script to reproduce the
evaluation.

To test the serverless use case we also require set up
vHive [119] instance. To simplify this process by provid-
ing, we provide a configuration example for NixOS, with
further details described in the artifact itself [86].

A.2.4 Benchmarks. Next to our own measurment scripts
and tests we also rely in our artifact on the following public
benchmarks/tests:

• xfstests [61]
• Phoronix benchmark [65]
• fio [54]

A.3 Set-up
Install nix as described on its homepage [84].
The use-case ‘serverless debug shell’ from Section 6.5 is

set up by including the nix module definitions from lambda-
pirate [86] into your NixOS configuration. Those modules
are already applied on the machines provided by us.

A.4 Evaluation workflow
The evaluation script tests/reproduce.py runs all the ex-
periments. This script only depends on Python and Nix as
referenced in the software requirements. All other depen-
dencies will be loaded through Nix. If the script fails at any
point it can be restarted—after the restart, it will continue
with the incomplete builds or experiments. Each command
it runs will be printed during the evaluation along with en-
vironment variable set. The evaluation script is executed as
follows:
$ python . / t e s t s / r ep roduce . py

A.4.1 Major Claims. The claims we make for VMSH can
be grouped into generality, performance and functionality:

• (C1) Generality: VMSH supports a wide range of KVM-
based hypervisors and guest kernel versions (see Sec-
tion 6.2) listed in Table 1. This claim is confirmed by
the unit tests of experiments (E2) and (E3).

• (C2) Performance: Our main goal is to not affect the per-
formance of applications running in a guest to which
VMSH is connected. The performance of attached tools
and services is secondary, but they must be usable. We
claim that attached tools running through VMSH are
on average 1.5× slower (see Figure 5, Section 6.3). The
VM and devices not connected to VMSH experience no
slowdown (see Figure 6, Section 6.3). Our performance
claims are confirmed by the benchmarks and graphs
generated by the experiments (E4-6).

• (C3) Functionality: VMSH has a correct and functional
implementation. We evaluate its robustness in Sec-
tion 6.1 (E1), measure the potential of VMSH to reduce
the size of boot images in Section 6.4 (E7) and test the
use-cases from Section 6.5 in (E8-10).

18

VMSH: Hypervisor-agnostic Guest Overlays for VMs EuroSys ’22, April 5–8, 2022, RENNES, France

A.4.2 Experiments. All benchmarks except Use-case #1
are fully automated, hence the time is given in machine time.
To run the evaluation, execute the tests/reproduce.py.
This will generates all graphs in this paper.

• (E1) Section 6.1 Robustness (xfstests) (~2h): This runs
xfstests and reports how many tests pass per imple-
mentation.

• (E2) Section 6.2 Generality, hypervisors (5min): This
is a unit test from VMSH itself, that tests attaching of
VMSH against the tested hypervisors.

• (E3) Section 6.2 Generality, kernels (5min): A unit test
that attaches VMSH to guests with different LTS kernel
versions. The guests run in QEMU.

• (E4) Figure 5: Relative performance of vmsh-blk for
the Phoronix Test Suite compared to qemu-blk. (~5h)

• (E5) Figure 6: fio with different configurations featur-
ing qemu-blk and vmsh-blk with direct IO, and file IO
with qemu-9p. (~2h)

• (E6) Figure 7: VMSH-console responsiveness compared
to SSH. (5min)

• (E7) Figure 8: VM size reduction for the top-40 Docker
images (average reduction: 60%). (1h with Gigabit
Ethernet)

• (E8) Section 6.5 Use-case #1, Serverless debug shell
(2min): This usecase is executed interactively follow-
ing the instruction on its project page [86].

• (E9) Section 6.5 Use-case #2, VM rescue system (1min):
A unittest that resets the password of a guest using
VMSH.

• (E10) Section 6.5 Use-case #3, Package security scanner
(1min): A unit test that scans installed alpine packages
of a virtual machine using VMSH.

19

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Cloud VM agents and their limitations
	2.2 Motivation: The Missing Abstraction in VMs
	2.3 Example Use-cases Enabled by VMSH

	3 Overview
	3.1 System Overview
	3.2 Threat Model
	3.3 Design Challenges

	4 Design
	4.1 Hypervisor-agnostic Side-loading for VMs
	4.2 Kernel-agnostic Library
	4.3 Hypervisor-independent VirtIO Devices
	4.4 Container-based System Overlay
	4.5 Security

	5 Implementation
	6 Evaluation
	6.1 Robustness
	6.2 Generality
	6.3 Performance
	6.4 Effectiveness
	6.5 Use-cases

	7 Related Work
	8 Conclusion
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow

